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a b s t r a c t

We numerically study a multi-band absorption based on electromagnetic-induced-transparency effect of
metamaterial. By exploiting the coupling between bright and dark plasmonic modes of cut-wire triplet,
which consists of a vertical wire and two horizontal wires, a dual-band absorption is realized at 243 and
266 THz. Then, the absorber structure is improved by adding two new horizontal wires which play role
as second dark meta-molecules. Due to the dark–dark coupling, another absorption band arises so that a
triple-band absorption is created at 240, 250 and 264 THz. The role of interaction between dark meta-
molecules in triple-band absorption is investigated, revealing a specific non-monotonic characteristic of
the second absorption peak. Finally, the influence of incident angle of EM wave on multi-band absorbers
shows that the absorption of lowest frequency peak is robust while those of higher frequency peaks are
strongly weaken with increasing of the incident angle.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Artificial sub-wavelength materials, the so-called metamater-
ials (MMs), can exhibit desirable electromagnetic (EM) responses
which are even not found in natural materials. By tailoring the
unit-cell structure, a variety of fascinating phenomena are realized
such as negative refractive index [1–3], invisibility cloaking [4,5],
and super-resolution [6,7]. In 2008, another attractive phenom-
enon, which is perfect absorption, was discovered by Landy et al.
[8] and made a lot of attention due to the considerable amount of
applicability in devices including solar cells [9], imaging [10], and
plasmonic sensor [11]. Since then, researches on MM perfect ab-
sorber (MPA) have been expanded, bringing many demonstrations
in various frequency ranges [12–14]. Nowadays, multi-band and
broadband absorption are still the focus of interest for real needs.
A common approach is to design a geometrically gradient multi-
resonator structure whose resonances, separated closely, can be
directly and simultaneously excited by the incident wave [15–17].

Electromagnetic-induced transparency (EIT) is basically a
quantum coherent process which requires very complicated and
rigorous experimental conditions [18,19]. One of the superiorities

of MMs is that the EIT effect can be mimicked in a much more
easier way by using MMs [20–22]. In this work, a different ap-
proach to create a multi-band MPA is proposed by exploiting the
EIT effect. Generally, there is single absorption peak when external
EM field excites only one plasmonic resonance. The key idea is that
dual-band absorption can be achieved by employing the near-field
coupling between bright and dark plasmonic modes even though
only one resonance can be directly excited by the EM field. An
extended model inducing triple-band absorption is also provided
by considering the interaction between dark meta-molecules. Fi-
nally, the role of dark–dark coupling in absorption spectrum is
studied to comprehend the EM behavior of multi-band MPA. Our
work might be useful for many applications such as multi-fre-
quency filters and single/multi-mode switching devices.

2. Design and simulation

Fig. 1 illustrates the unit cell structures of designed cut-wire-
triplet (CWT) and cut-wire-quintet (CWQ) absorbers. The CWT
absorber (CWTA) structure is made of three different layers. The
front layer is a metallic CWT which consists of a vertical cut wire
(CW) and two horizontal CWs placed at a certain distance from the
ends of the vertical. The geometry of these CWs is identical. The
middle and back layers are continuous dielectric and metallic
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plane, respectively. The detailed geometrical parameters of CWTA
are a¼800 nm, t1¼t2¼30 nm, t3¼100 nm, l¼190 nm, w¼80 nm,
and g¼20 nm. The CWQ absorber (CWQA) structure is an ex-
tended structure of CWTA by adding one more pair of horizontal
CWs on the front layer. The CWQA has the same geometrical
parameters as CWTA except two new parameters g1¼20 nm and
g2¼10 nm. The parameter s defines the displacement of the

vertical CW from the center position. This parameter is a key factor
to achieve a multi-band absorption.

In our simulation, the metal was silver and described by the
Drude model, with a plasmon frequency of 1.366�1016 rad s�1

and a collision frequency of 3.07�1013 Hz [20,23]. The dielectric
was chosen as silicon dioxide with the function fitted from Ref.
[24]. The simulations were performed using a finite-integration

Fig. 1. Illustrations of the unit cell of (a) cut-wire-triplet and (b) cut-wire-quintet absorbers with the electromagnetic polarization.

Fig. 2. (a) Illustration of the unit cell of EIT structure with the electromagnetic polarization. (b) Schematic energy-level diagram of the cut-wire triplet. (c) Transmission
spectra of the EIT structure according to s. (d) Schematic energy-level diagram of the cut-wire quintet.
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