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a b s t r a c t

The problems of photon transport in one-dimensional waveguides have recently attracted great atten-
tions. We consider the case of single photons scattering off a Λ-type three-level quantum emitter, and
discuss the perturbative treatments of the scattering processes in terms of Born approximation for the
Lippmann–Schwinger formalism. We show that the iterative Born series of the scattering amplitudes
converge to the exact results obtained by other approaches. The generalization of our work provides a
foundational basis for efficient computational schemes for photon scattering problems in one-dimen-
sional waveguides.

& 2015 Elsevier B.V. All rights reserved.

Recently the transport problems of photons scattering off a
quantum emitter in a one-dimensional continuum such as an
optical waveguide have attracted considerable attentions [1–8].
Such transport problems are directly related to cavity quantum
electrodynamics (cavity QED), and several simple models have
been shown to permit exact solutions. All of which were obtained
by postulating the functional forms of the scattering states, i.e.,
ansatz. As the complexities of the system increases (e.g., more
complicated energy levels or more cavities), it becomes more
challenging to postulate the ansatz, and to justify the solutions for
specified input states. It is thus of great interest to seek a sys-
tematic and computationally efficient procedure for obtaining the
scattering states for more complicated cases, either eliminating
the use of any ansatz, or serving as an independent check. On a
separate front, scattering phenomena are common in many fields
of physics, ranging from, for example, particle scattering [9],
spectroscopy, surface characterization [10], to imaging and sen-
sing. As the dynamics of the scattering processes in general cannot
be solved exactly, many approximate computational schemes have
been developed for scattering problems. Among these approx-
imate schemes, the Born series expansion is perhaps the most

commonly used technique. Despite its simplicity, the Born series is
known to diverge near a resonance (where non-trivial scattering
processes typically occur) [11], and one often questions the va-
lidity of the Born series when approaching a resonance. The
summation of the Born series to yield a closed form is also not
possible in general. Here we consider the case of single photons
scattering off a Λ-type three-level quantum emitter. We show that,
for any input states, the Born series expansion of the scattering
amplitudes can be summed to arbitrary order; and in the off-re-
sonance regime, the series converges to the exact solutions given
by the Lippmann–Schwinger equations and other methods. The
generalization of the perturbative treatments for the case of
multiple photons could provide a foundational basis for efficient
computational schemes for photon scattering problems in one-
dimensional waveguides.

We begin with a time-dependent formulation of the scattering
processes [9]. Consider the case when the Hamiltonian of the

system has the form H H V0
^ = ^ + ^ ,where H0

^ is the Hamiltonian de-

scribing the free constituents;V̂ describes the interaction between

the constituents and has a finite range. Both Ĥ and H0
^ exhibit

continuous energy spectra. Let ψ| 〉 be the interacting scattering
state of the system at t¼0 (which can be a linear superposition of
different energy eigen states),the state of the system at any time
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thus is t U t e( ) ( ) iHt/Ψ ψ ψ| 〉 = ^ | 〉 ≡ | 〉− ^
,which satisfies the Schrödinger

equation i t t H t/ ( ) ( )Ψ Ψ∂ ∂ | 〉 = ^| 〉. When followed back in time well
before the scattering, t( )Ψ| 〉 represents constituents that are loca-
lized far away from each other and, therefore, behaves like free
constituents and is experimentally indistinguishable from the

freely evolving state t U t e( ) ( ) i
iH t

i

0
/0Φ ϕ ϕ| 〉 = ^ | 〉 ≡ | 〉− ^

, for some free
state iϕ| 〉. Consequently the two states satisfy the causality condi-
tion:

U t U t t( ) ( ) when . (1)i

0
ψ ϕ^ | 〉⟶ ^ | 〉 → − ∞

From the adiabatic switching of the interaction V̂ [9,12,13], it
follows from Eq. (1) that

i d e U VUlim ( ) ( ) . (2)i i
0 0

0∫ψ ϕ τ τ τ ϕ| 〉 = | 〉 + ^ ^ ^ | 〉τ
ϵ→

−∞
+ϵ †

+

When ψ| 〉 and iϕ| 〉 are stationary states (i.e., H Eψ ψ^| 〉 = | 〉 and

H Ei i0 ϕ ϕ^ | 〉 = | 〉), Eq. (2) can be shown to become

E H i
V

E H i
V

lim
1

lim
1

,
(3)

E i E i E

i E E

0

0
0

ψ ϕ ϕ

ϕ ψ

| 〉 = | 〉 +
− ^ + ϵ

^| 〉

= | 〉 +
− ^ + ϵ

^| 〉

ϵ→

ϵ→

+

+

where the i+ ϵ in the denominator of each Green's function spe-
cifies the causality condition in Eq. (1). A subscript E is used to
explicitly denote that these states are stationary states (energy
eigen states) of energy E. Similarly, there exists a free state fϕ| 〉

such that U t U t( ) ( ) f

0
ψ ϕ^ | 〉⟶ ^ | 〉 when t → + ∞; when both ψ| 〉 and

fϕ| 〉 are stationary states (i.e., H Eψ ψ^| 〉 = | 〉 and H Ef f0 ϕ ϕ^ | 〉 = | 〉), the
two states satisfy

E H i
V

E H i
V

lim
1

lim
1

,
(4)

E f E f E

f E E

0

0
0

ψ ϕ ϕ

ϕ ψ

| 〉 = | 〉 +
− ^ − ϵ

^| 〉

= | 〉 +
− ^ − ϵ

^| 〉

ϵ→

ϵ→

+

+

where the i− ϵ specifies the causality.
Eqs. (3) and (4) are called the Lippmann–Schwinger equations.

In practical computations, one often uses the latter expression in
Eqs. (3) and (4), respectively, as it involves only the free Ha-

miltonian H0
^ . The physical interpretation is that if

t dEg E e( ) ( )i
i E t

i E
( / )∫ϕ ϕ| 〉 ≡ | 〉− at t = − ∞ is the prepared free input

state (a wave packet, where g(E) is the amplitude of the distribu-
tion), then t dEg E e( ) ( ) i E t

E
( / )∫ψ ψ| 〉 ≡ | 〉− is the interacting scattering

state (also a wave packet), and t dEg E e( ) ( )f
i E t

f E
( / )∫ϕ ϕ| 〉 ≡ | 〉− at

t =+∞ is the free outgoing state (yet another wave packet). As long
as the time-dependent interpretation is clearly understood, it is
harmless and convenient to speak of Eψ| 〉 (an extended state) as the
actual state at t¼0 that has evolved from the initial input state

i Eϕ| 〉 (also an extended state), and that Eϕ| 〉 would eventually evolve
into the final state f Eϕ| 〉 (yet another extended state) [9]. These
three states are said to be causally related. When any one of the
three states i Eϕ| 〉 , Eψ| 〉 , or f Eϕ| 〉 , is specified, Eqs. (3) and (4) provide
a scheme to systematically compute the other two states. Note
that in Eq. (3) of the Lippmann–Schwinger equations, the state

i Eϕ| 〉 is incorporated as a boundary condition, while in the time-
dependent description, i Eϕ| 〉 serves as an initial condition. More
importantly, in the stationary state calculation (i.e.,

t e( ) iEt
E

/Ψ ψ| 〉 = | 〉− and t e( ) iEt
i E

/Φ ϕ| 〉 = | 〉− ) using the Schrödinger

equation, the eigen-equation H EE Eψ ψ^| 〉 = | 〉 generally permits more
than one solutions; only one of the solutions is causally related to

i Eϕ| 〉 . For complicated scattering processes, it is not always
straightforward to find the causally related scattering states by
directly using the Schrödinger equation.

We now discuss how to solve the Lippmann–Schwinger equa-
tions. For brevity, we will drop the subscript E in each state
hereafter. Because the unknown state ψ| 〉 appears on both sides of
the Lippmann–Schwinger equations, Eqs. (3) and (4) are difficult
to solve. Nonetheless, an iterative approximation can be straight-
forwardly developed: when the input state iϕ| 〉 is specified, the
first-order Born approximation 1ψ| 〉 is obtained by replacing the
unknown state ψ| 〉 at the right hand side of the LS equation (Eq.
(3)) by iϕ| 〉:

E H i
V

1

0
,

(5)
i i1

0

ψ ψ ϕ ϕ| 〉 ≃ | 〉 ≡ | 〉 +
− ^ +

^| 〉
+

where we have used 0+ to represent the limit. Higher-order Born
state is obtained by iteratively repeating the procedure:
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where i0ψ ϕ| 〉 ≡ | 〉 is the input state. A well-known example of the
first-order Born approximation is the three-dimensional scattering
of a plane wave off a scatterer [14]: e f e rr k k( ) ( , ) /i ikrk rψ ≃ + ′·

when r r= | | is large. f k k( , )′ is the scattering amplitude that the
momentum of the incoming wave is kwhile the momentum of the
outgoing wave is kk r′ ≡ ^. For a given potential, e.g., the Coulomb
potential, the n-th order Born approximation of the wave function
can be formally written down but the series cannot be summed to
yield a closed form.

With these considerations, here we investigate the following
scattering processes in quantum optics: a single photon scatters
off a Λ-type (Lambda-type) three-level quantum emitter. The
photon propagates in an optical waveguide to which the quantum

emitter is coupled (Fig. 1 inset). The Hamiltonian H H Hp q0
^ = ^ + ^ ,

where Hp
^ describes the free photons and Hp

^ the quantum emitter.

Hp
^ has the following form [15]:

{ }H dx c x iv c x c x iv c x( )( ) ( ) ( )( ) ( ) , (7)p R g x R L g x L0 0∫ ω ω^ = − ∂ + + ∂† †

where c x( )R
† and cR(x) are creation and annihilation operators for a

right-moving photon at position x, and c x( )L
† and cL(x) are creation

and annihilation operators for a left-moving photon at position x.
vg is the group velocity of the photon, and ω0 is a reference fre-
quency. The dispersion relation between the wave vector k ( )ω and

the frequency of the photon ωis given by v k ( )g0ω ω ω− = . Hq
^ is

given by

( )H a a a a a a , (8)q 1 1 1 2 2 2 3 3 3Ω Ω Ω^ = + +† † †

where ai
† and ai creation and annihilation operators for the atomic

i| 〉 state. The interaction term describes the scattering between
photons and the emitter and is given by

V dx x V c x c x c x c x

V c x c x c x c x

( ){ [( ( ) ( )) ( ( ) ( )) ]

[( ( ) ( )) ( ( ) ( )) ]}, (9)

R L R L

R L R L

1 13 31

2 23 32

∫ δ σ σ

σ σ

^ = + + +

+ + + +

† †

† †

where a aij i jσ = † is the transition operator from atomic state j| 〉 to
atomic state i| 〉 ; V1 and V2 describe the coupling strengths for the
corresponding transitions; the emitter is located at x¼0 (for an

emitter at x xq= , x( )δ must be replaced by x x( )qδ − ). V̂ describes
all absorption and emission processes of photons by the quantum
emitter. For example, the term proportional to c x c x( ( ) ( ))R L 13σ+† †
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