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a b s t r a c t

Two-photon interference effects, such as the Hong–Ou–Mandel (HOM) effect, can be used to characterize
to what extent two photons are identical [20]. Furthermore, these interference effects underly linear
optics quantum computation. We show here how nonlinear optical effects, such as those mediated by
atoms or quantum dots in a cavity, degrade the interference. This implies that, on the one hand, non-
linearities are to be avoided if one wishes to utilize the interference, but on the other hand, one may be
able to measure or detect nonlinearities by observing the disappearance of the interference.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Hong–Ou–Mandel (HOM) effect [17] is a celebrated ex-
ample of a pure quantum interference effect. When two photons
impinge on two different input ports of a 50/50 beamsplitter, the
photons always emerge together in one of the two output ports.
The destructive interference between the two paths that lead to
the same final state with both photons exiting different output
ports can be perfect only if at the output the two photons are
indistinguishable. They must, in particular, have identical spectral
and polarization states at the output. In principle there is no such
requirement for the photons at the input, and HOM-like inter-
ference can occur, for example, between photons of different col-
ors as well [26], provided there is a frequency-changing mechan-
ism between input and output.

It is straightforward to describe the HOM interference effect in
terms of creation operators, one for each electromagnetic field
mode. If we denote the two relevant input operators of the 50/50
beamsplitter as ain

† and bin
† and the two corresponding output op-

erators by aout
† and bout

† , then we may write the effect of the 50/50
beamsplitter as a particular unitary transformation between the
pairs of operators:
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This description shows that an input state with two photons in
input modes ain and bin is transformed into an output state of the
form a b(( ) ( ) ) vac /2out

2
out

2− | 〉† † , with the pair of photons always in a
single output mode.

Any linear optics setup through which two photons travel af-
fects a unitary transformation on the mode operators. The ques-
tion we consider here is how nonlinear optics effects affect HOM
interference. We consider this question in the context of coupled
cavity arrays. Most research on coupled cavity arrays has focused
on how classical light can be stored or delayed (there are more
than a thousand papers in this area, see for example
[33,16,15,29,1,19]), but such systems will be very useful for
quantum communication purposes, too. In particular, such cavity
arrays can be easily integrated with fiber optics, and they can be
used to accurately introduce small time delays of single-photon
wavepackets. One may expect cavity arrays to be used for en-
tanglement purification protocols and quantum repeaters, which
promise to increase the distance over which quantum key dis-
tribution can be securely employed [6,13]. This provides some
additional motivation for studying this particular physical system.

We will include the generation of the two photons explicitly by
assuming that we have two single emitters (which could be single
atoms or single quantum dots or NV centers in diamond
[28,22,8,27]), one in each of two cavities (see Fig. 1). This kills two
birds with one stone: the two emitters will provide nonlinear
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optical effects, and the two photons whose interference effects we
wish to study are automatically described realistically as wave
packets. Note that the measurement of non-linearity in the pre-
sent cavity-QED setup can be performed by following the proce-
dures described in [9,18], which gives our work more experi-
mental feasibility. The only work we are aware of in more or less
the same direction as ours is a paper [24] on the HOM effect in a
solid-state setup, with ambient noise taken into account, and with
the two emitters included in the description, too (but no cavities,
and hence no strong nonlinearities).

We describe our system and the theoretical methods we em-
ploy in Section 2. The description of unidirectional coupling of two
cavities can be done elegantly within the formalism of quantum
cascaded systems combined with quantum trajectories [4,12]. In
our case we can still straightforwardly use the latter, but the for-
mer theory has to be adjusted to account for bidirectional coupling
(so that the photons can travel back and forth between the two
cavities). With the help of these methods, we study two-photon
interference effects in Section 3. We simulate that there is an ex-
periment in which one records which detector(s) detect the two
photons, and at what times. The important information is then
found in correlations between the two photon detections.

2. Two spatially separated atom-cavity systems

2.1. Model and Hamiltonian

We have two spatially separated atom-cavity systems (referred
to as “left” or “L” and “right” or “R”) coupled through an optical
fiber which is assumed to have two continua of modes (propa-
gating to the left and right), as shown in Fig. 1. A single photon is
generated in each cavity through an initially excited atom (with
transition frequency ωeg: both atoms are taken to be identical in
the rest of the paper). The spontaneous emission from the atoms is
set to zero. In practice one suppresses the effects of spontaneous
emission by using three-level atoms in the Λ configuration. The
excited state can be eliminated adiabatically (it is only off-re-
sonantly coupled), and the resulting description is that of an ef-
fective two-level system, where both levels are ground states.

Due to the atom-cavity coupling (represented by complex
coupling coefficients gL and gR for left and right systems, respec-
tively) the emitted photon can excite any one of the two counter
propagating cavity modes, which are described by annihilation
operators a1

^ and a2
^ for the left cavity, and a3

^ and a4
^ for the right

cavity. Inside each cavity, both modes are assumed to have the
same single resonant frequency ωc.

There are two possibilities for the excitation to leak out of a
given cavity. For example, for the left cavity, the photon in the
mode a2

^ can exit towards the left (at a leakage rate κ) and will be
detected by detector Db. On the other hand, if the photon is in the
mode a1

^ , then it can escape towards the right (at the same leakage
rate κ) after which it can enter into the right cavity due to the
evanescent coupling between fiber and cavity. It may, alter-
natively, go straight to the detector Da. Excitations can shuttle back
and forth many times before finally being lost by the system and
detected by the two detectors.

In our system there is a time delay τ between the cavities
(which is defined in terms of the separation d between cavities as

d c/τ = , with c the group velocity of light in the fiber, which is
assumed to be constant around the cavities' and atoms' resonant
frequencies). Such time delays appear in the context of cascaded
quantum networks [4,12] where they are considered arbitrary
constants that can be eliminated, since they prove irrelevant to the
physics of the problem. But for our system we cannot so simply
ignore the time delay. This is due to the fact that the coupling
between system L and R is not unidirectional. From this perspec-
tive our model resembles more a quantum feedback network
[32,14], with the difference that there is no special part added to
the actual system to perform this feedback [25,31]. Rather, this
happens due to the geometry of the system itself.

Assuming no coupling between the intra-cavity modes and
applying the standard rotating wave (RWA) and Markov approx-
imations, the Hamiltonian of the global system (atoms, cavities
and the fiber) takes the following form:

H
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Fig. 1. Two spatially separated atom-cavity systems, and two single-photon detectors. Thanks to the bi-directional coupling between the two cavities, excitations can be
transferred between the atom-cavity systems multiple times before being detected. We consider here a mirror-symmetric system, with all coupling constants, decay rates,
and resonance frequencies pairwise the same for the left and right atom-cavity systems. The detectors count photons in the two output modes, described by annihilation
operators aout^ and bout

^ . For further details, see main text.
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