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a b s t r a c t

A new method which is a combination of the harmonic balance and finite difference techniques (HBFD)
is proposed for complete time-harmonic solution of the nonlinear wave equation. All interactions be-
tween different harmonics up to an arbitrary order can be incorporated. The effect of higher order
harmonics on two important nonlinear optical phenomena, namely, the second harmonic generation
(SHG) and frequency mixing is investigated by this method and the results are compared with well-
known analytical solutions. The method is quite general and can be used to study wave propagation in all
nonlinear media.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since the invention of laser, propagation of high intensity op-
tical waves which is substantially affected by the nonlinear prop-
erties of the medium has been a topic of high interest. Non-
linearities of the medium lead to optical phenomena such as
second harmonic generation, frequency mixing, self-refraction,
self-phase modulation and soliton which have all found interest-
ing applications in optoelectronics and optical communications.

In order to study these phenomena, the wave equation must be
solved in nonlinear (NL) media. Approximate and simplified
closed-form solutions of the NL wave equation for some of these
phenomena already exist. These solutions are usually obtained by
neglecting higher order harmonics and employing other simpli-
fying assumptions such as slowly varying envelope approximation
(SVEA) [1,2] which are only applicable when the nonlinear effects
are very weak [3].

Nonlinear Schrödinger equation (NLSE) has been widely used
for Soliton propagation and SHG [4–6]. Existence of a slowly
varying envelope is the fundamental assumption behind the de-
rivation of NLSE. On the other hand, purely numerical techniques
such as finite difference time domain (FDTD) and beam

propagation method (BPM) have also been used to study a number
of nonlinear problems such as SHG, self-focusing, and Soliton
propagation [7–19]. In conventional BPM such as FFT-BPM [15] or
FD-BPM [16] the linear and nonlinear parts of the paraxial scalar
wave equation are treated separately. In Bidirectional BPM an
iterative procedure is employed which is started by solving an
independent linear problem to calculate the input/output com-
ponents of the electric field. Then, energetic exchanges between
the two harmonics, which are due to the NL characteristic of the
medium, are computed by using these components. Finally, the
input/output field components are calculated by considering the
energetic exchanges. This iteration stops when the difference be-
tween new and old components becomes less than a predefined
tolerance [20,21]. Increasing the number of harmonics in this
method quickly increases the complexity in calculation of the total
energetic exchanges. FDTD can yield more accurate results than
those of conventional BPM because it does not use the paraxial
approximation. On the other hand, in order to minimize the effects
of numerical dispersion while maintaining stability, FDTD requires
fine temporal and spatial discretizations which leads to high
computational cost of this method [7,8].

In this paper, a new time-harmonic solution for the nonlinear
wave equation is presented in which the effects of higher order
harmonics up to an arbitrary order are included. The proposed
method is inspired by the Harmonic Balance Technique (HBT)
which is a well-known method for the analysis of lumped and
distributed nonlinear circuits [22]. In this method, all interactions
among different harmonics are taken into account while the
number of harmonics involved is limited by the user. HBT has also
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been applied to the analysis of nonlinear transmission lines with
periodic excitation and formation of shockwaves and solitons in
such structures have been reported [23]. The common practice is
that the nonlinear transmission line is divided into small segments
and each segment is replaced by a lumped element equivalent
circuit with nonlinear capacitors. The resulting lumped element
circuit is then solved by HBT. The number of nonlinear elements
depends on the electrical length of the transmission line, conse-
quently, analyzing a long nonlinear transmission line can become
very time consuming by this approach. To overcome this problem,
our proposed technique uses finite difference method to solve the
nonlinear differential equation in frequency domain. First, the
solution is expanded in terms of multiple temporal harmonics
with spatially varying coefficients. After balancing the harmonics,
a system of nonlinear differential equations for the coefficients is
obtained which is solved by the finite difference method. Finally,
the Manley–Rowe relations are used to check the balance of power
in the medium [24]. The proposed method is called HB-FD tech-
nique. It will be used to simulate SHG and frequency mixing in
one-dimensional lossless nonlinear media by considering the ef-
fects of higher order harmonics. It will be shown that the presence
of a higher order harmonic will strongly influence both nonlinear
phenomena. It should be stressed that simplifying assumptions
such as paraxial approximation and SVEA are not used in the
proposed formulation, therefore, not only strong nonlinearity can
be considered but the true phase mismatch is also calculated
based on the actual dispersion characteristics of the medium. Here
the linear and NL parts are not separated and any number of
harmonics or combination of waves at different frequencies can be
easily incorporated into the solution procedure. These character-
istics result in lower complexity, faster solution, and more versa-
tility compared to Bidirectional BPM [20]. Unlike FDTD which can
be used to simulate the propagation of narrow pulses of light, the
proposed method in its current form can only handle a super-
position of finite number of monochromatic waves with different
frequencies. Compared to similar methods that employ HBT for
modeling wave propagation in nonlinear transmission lines [25],
HB-FD technique is faster and can be easily adapted for lossy,
dispersive, or inhomogeneous media.

2. Formulation

2.1. Nonlinear wave equation

The wave equation in a NL, homogeneous, and anisotropic
medium is derived simply from Maxwell's equations [26]:
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in which c 1/ 0 0μ= ϵ is the speed of light in vacuum. The polar-
ization vector P can be separated into linear and NL parts:
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where (1)χ is the linear first order susceptibility, and (2)χ , ,(3)χ …
are NL higher order susceptibilities [1,4]. When the NL response of
the medium is not instantaneous, the successive terms in the
above equation should be replaced by convolutions in time
domain [26].

2.2. Solution of NL wave equation by HB technique

In this section harmonic balance technique is used to obtain a
steady state time-harmonic solution for the NL wave equation. The
electric field and polarization are expanded in terms of multiple

temporal harmonics with spatially varying coefficients:
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where nω stands for various frequencies which include funda-
mental frequencies, their integer harmonics, and linear combina-
tions of them. En and Pn are complex vector coefficients of the
electric field and polarization at frequency ωn which, in general,
are functions of spatial coordinates. Substituting (3) and (4) into
(1) yields
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After substituting frequency domain descriptions of linear and NL
polarizations into (5) and only considering NL susceptibilities of
the second and third order (higher order NL susceptibilities are
usually insignificant and neglected) we obtain [4]
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In order for (6) to hold at all times, coefficients of j texp( )nω must
be zero. Hence, a NL system of equations is derived which is the
time-harmonic equivalent of the NL wave equation:
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To demonstrate the basic steps of the proposed method, in this
paper, we only consider plane-wave propagation in an unbounded
isotropic NL medium. It is assumed that the plane-wave propa-
gates along the z-axis and the electric field has a linear polariza-
tion along the x-axis. The medium is homogeneous in transverse
plane but its constitutive parameters may vary along the direction
of propagation. Therefore, (7) is reduced to a scalar equation:
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in which En(z) is the electric field component of the nth harmonic
and i( )χ may be function of z if the medium is inhomogeneous. The
system of second order NL differential equations in (8) must be
solved numerically.

2.3. Finite difference method

The finite difference method can be used to solve the system of
NL differential equations in (7) or (8) in space domain [27]. To
solve (8), the z-axis between z¼0 and z¼L (L is arbitrary) is
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