Contents lists available at SciVerse ScienceDirect

Solar Energy Materials & Solar Cells

journal homepage: www.elsevier.com/locate/solmat

Blistering in ALD Al_2O_3 passivation layers as rear contacting for local Al BSF Si solar cells

B. Vermang^{a,b,*}, H. Goverde^c, A. Uruena^{a,b}, A. Lorenz^a, E. Cornagliotti^a, A. Rothschild^a, J. John^a, J. Poortmans^{a,b}, R. Mertens^{a,b}

^a Imec, Kapeldreef 75, 3001 Heverlee, Belgium

^b Katholieke Universiteit Leuven (ESAT), Kasteelpark Arenberg 10, 3001 Heverlee, Belgium

^c Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands

ARTICLE INFO

Article history: Received 20 August 2011 Received in revised form 29 November 2011 Accepted 24 January 2012 Available online 22 February 2012

Keywords: Si PERC Local Al BSF Surface passivation Atomic layer deposition Al₂O₃

ABSTRACT

Random Al back surface field (BSF) p-type Si solar cells are presented, where a stack of Al_2O_3 and SiN_x is used as rear surface passivation layer containing blisters. It is shown that no additional contact opening step is needed, since during co-firing local Al BSFs are induced at the location of these blisters. The best fill factors and short circuit currents are obtained in the case of (i) a hydrophobic pre-passivation cleaning, since it leads to a small density of larger blisters, and (ii) 10 nm of Al_2O_3 , where the blistering size still increases during firing thanks to additional out-gassing. There is an apparent gain in Jsc and Voc of, respectively, 1.3 mA/cm² and 5 mV for the best random Al BSF cells compared to full Al BSF reference cells, because of better rear internal reflection and rear surface passivation.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In Si solar cell technology, given that ever thinner wafers imply an increased surface-to-volume ratio, sufficient surface passivation gains importance. The cost of Si constitutes about 50% of the module cost [1]. Therefore, in order to be less dependent on price fluctuations of poly-silicon feedstock and wafers, and to eventually realize cost targets significantly below \in 1.00/Wp for c-Si modules, an evolution towards a reduction of "grams of pure Si/ Wp" is taking place.

An appealing candidate for outstanding Si surface passivation is aluminum oxide (Al_2O_3), deposited by thermal atomic layer deposition (ALD), plasma-enhanced (PE-) ALD or plasmaenhanced chemical vapor deposition (PECVD). The underlying mechanism is based on chemical passivation—a low density of interface defects D_{it} —and field-effect passivation with a high density of fixed negative charges [2–9]. Annealing a thick enough Al_2O_3 layer, capping it with PECVD silicon oxide (SiO_x) or silicon nitride (SiN_x) or annealing a stack of Al_2O_3 and SiO_x or SiN_x can lead to blister formation. Blistering is the partial de-lamination of a thick enough Al_2O_3 layer caused by gaseous desorption in the Al_2O_3 layer upon thermal treatments above a critical temperature: the Al_2O_3 layer acts as a gas barrier and bubble formation occurs [10]. Blistering of Al_2O_3 and capped Al_2O_3 layers has been observed for various deposition techniques: thermal ALD [10], PE-ALD [11] and PECVD [12,13].

At present, passivated emitter and rear cell (PERC) point contact formation is industrially viable in two ways [14]: (a) the i-PERC process, where the dielectric is opened via laser ablation of the passivating dielectric before the rear-side metallization [15], and (b) laser-fired contacts (LFC), where the contacts are laser-fused after metallization [16].

In this work, blistering is proposed as an approach to create semiconductor-metal contacts. Random local Al back surface field (BSF) solar cells with a blistered layer as rear surface passivation have been prepared. It is shown that blistered passivation layers covered by Al induce semiconductor-metal contacts upon high temperature treatments; hence no additional contact opening step is needed. As evidence, various proof-of-concept cells are presented, and their issues and full potential are discussed.

^{*} Corresponding author at: Imec, Katholieke Universiteit Leuven (ESAT), PV/SCT/ ISC, Kapeldreef 75, 3001 Heverlee, Belgium. Tel.: +32 16 28 7893; fax: +32 16 28 1097.

E-mail address: Bart,Vermang@imec.be (B. Vermang).

^{0927-0248/\$ -} see front matter \circledcirc 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.solmat.2012.01.032

Table 1

Baseline random Al BSF (left), full Al BSF reference (middle) and local Al BSF (right) p-type Si solar cell process sequences. The 148.25 cm² cells are 150 μ m thick, have a base resistivity of 2 Ω cm and an emitter of 60 Ω /sq.

Random Al BSF p-type Si solar cells	Full Al BSF p-type Si solar cells	Local Al BSF p-type Si solar cells
Texturing front and polishing rear Diffusion (POCl ₃) front Blistered passivation rear	Texturing front and polishing rear Diffusion (POCI ₃) front	Texturing front and polishing rear Diffusion (POCl ₃) front Blister-free passivation rear
Anti reflection coating (SiN_x) front	Anti reflection coating (SiN_x) front	Anti reflection coating (SiN _x) front Laser ablation rear
Al sputtering rear	Al screen-printing rear	Al sputtering rear
Ag screen-printing front	Ag screen-printing front	Ag screen-printing front
Co-firing	Co-firing	Co-firing

Fig. 1. (a) SEM tilted top-view and (b) cross-section images of a blistered ALD Al₂O₃/PECVD SiN_x layer on a mirror-polished c-Si substrate. (c) and (d) are optical microscopy top-view pictures of an ALD Al₂O₃/PECVD SiN_x layer grown on a rough c-Si surface, the pre-ALD deposition clean was hydrophilic or hydrophobic, respectively.

2. Experimental

 $12.5 \times 12.5 \text{ cm}^2$ semi-square random, full and local Al BSF p-type CZ Si solar cells have been made as described in Table 1. In the case of random local Al BSF cells, a blistered layer is used as rear surface passivation without any additional contact opening step. Full and blister-free local Al BSF cells are used as references.

Pre-passivation Si wafer cleanings have an HF-last (Si–H) or oxidizing (Si–OH) last step and finish with Marangoni drying, more details can be found in [17] and are specified in the text if essential.

As rear surface passivation for the random and local Al BSF cells, a stack of ALD Al_2O_3 and PECVD SiN_x is used. Thermal ALD Al_2O_3 films of 5, 10 or 30 nm are grown at 200 °C in a commercial (Cambridge Nanotech, Savannah S200) ALD reactor using trimethylaluminium (TMA) and de-ionized (DI) water as precursors. The SiN_x layer thickness is optimized for the rear internal reflectance in the solar cells by employing the CAMFR framework [18].

The co-firing process step (equals a rapid thermal processor (RTP) with a peak temperature above 835 °C for 1–2 s, see [19]) has been performed at 845, 865 or 885 °C for random and 865 °C for local and full Al BSF cells.

Blistering is visualized and measured with a NovaTM NanoSEM scanning electron microscope (SEM) or an Axio Imager 2 optical microscope (respectively from FEI and Zeiss).

The used current–voltage (*IV*) setup is a steady-state Xe lamp solar simulator (Wacom Electric Co., WXS-200S-20, AM 1.5 G) with an illuminated area of $200 \times 200 \text{ mm}^2$, a small bias error and a good stability over time, as shown in [20].

Spatially resolved series resistance of silicon solar cells is measured using a commercial photoluminescence (PL) system of BT imaging (LIS-R1) [21].

An in-house assembled light beam induced current (LBIC) measurement setup is used to map the short circuit current (Jsc) of solar cells at a wavelength of 1050 nm.

3. Results and discussion

3.1. Blistering in ALD Al_2O_3 /PECVD SiN_x passivation layers

Blistering is the partial de-lamination of a thick enough $(\geq 10 \text{ nm}) \text{ Al}_2\text{O}_3$ layer caused by gaseous desorption in the Al₂O₃ film upon thermal treatments above a critical temperature (typically 350 °C); the Al₂O₃ layer acts as a gas barrier and bubble

Download English Version:

https://daneshyari.com/en/article/79298

Download Persian Version:

https://daneshyari.com/article/79298

Daneshyari.com