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a b s t r a c t

We study radially symmetric diffractive optical elements to generate an array of local foci or intensity
zeros in the paraxial region by a certain law. The axial distribution is defined by the spatial spectrum of
the optical element's radial function, enabling the elements to be called longitudinal-spectrum lenses.
The theoretical explanation of the effect is based on the reduction of the Fresnel–Hankel transform to the
one-dimensional Fourier transform. The various lenses are analyzed include those generating long-
itudinal distribution proportional to the Airy and Hermite–Gaussian functions.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Generating a particular intensity profile along the optical axis
(coaxial lines, on-axis foci arrays, optical bottles, optical ‘bubble’
arrays, etc.) has been important in a number of metrology appli-
cations [1–4]; for imaging of extended or moving objects for
nondestructive analysis of materials [5–7], as well as for optical
micromanipulation [8–11].

The diffractive optical elements (DOEs) to generate a desired
longitudinal distribution are designed using both analytical [12–
19] and numerical [20–24] techniques.

In this work, we propose radially symmetric DOEs that gen-
erate on-axis local foci arrays, with their distribution defined by
the spatial spectrum of the optical element's radial function. This
property enables the elements to be called longitudinal-spectrum
lenses.

The theoretical substantiation of the effect is based on the re-
duction the Fresnel–Hankel transform to a one-dimensional
Fourier transform. Although such an approach has been employed
in a number of papers [20,25,26], it was used either to perform the
iterative calculation [20] or to find an axial pattern generated by
fractal zone plates [25,26].

In this work, we study a wider class of DOEs that enable the
generation of definite arrays of foci and/or zero-intensity points,

including those proportional to the Airy and Hermite–Gaussian
mode distributions.

2. Diffraction in a paraxial region

In the paraxial approximation, the propagation of a radially
symmetric light field is described by the following integral
Fresnel–Hankel transform:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟G z

ik
z

ikz
ik

z
g r

ikr
z

J
kr

z
r r( , ) exp( )exp

2
( )exp

2
d .

(1)

2

0

2

0∫ρ ρ ρ=
∞

On the optical axis ( 0ρ = ), Eq. (1) is simplified

⎛
⎝⎜

⎞
⎠⎟G z

ik
z

ikz g r
ikr

z
r r(0, ) exp( ) ( )exp

2
d

(2)0

2

∫=
∞

and can be reduced to a one-dimensional (1D) Fourier transform by
change of variables [20]. Assuming that the g(r) function is bounded
by radius R, the normalized variables can be conveniently introduced:
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In this case, Eq. (2) takes the form
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which is proportional to the spatial spectrum of the bounded
function
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Making use of Eq. (4), distributions corresponding to the spatial
spectrum of the bounded functions can be generated on the op-
tical axis. The intensity on the optical axis

I u u g x i ux x( ) 4 ( )exp( 2 )d
(7)
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satisfies the radiation condition, because it tends to zero at u 0→
(z → ∞).

Caution needs to be taken when treating the situation at u → ∞
(z 0→ ), because in this case the paraxial condition can be violated,
thus rendering Eq. (1) invalid.

3. Diffraction by a ring aperture

Below, we analyze a simplest case of a uniform input field on
the ring aperture:
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Using Eq. (4), we obtain
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where ( )a i i R u2 exp /2 2π π λ= , x x x( )/2c 1 2= + is the ring median co-

ordinate, and x x( )2 1Δ = − is the ring's width.
In the initial coordinates and in view of Eqs. (7) and (9), the

intensity takes the form
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As it follows from Eq. (10), the same-intensity optical-axis
maxima are found at distances
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Thus, the relative maxima positions are described by the same
relationship, which is only scaled due to the aperture width. The
outermost maximum from the input plane (z 0= ) is found at the
distance
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The rest maxima are located closer to the input plane, with the
inter-maximum distance decreasing as
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It stands to reason that at small distances the above
approximation is not valid. The aperture width should also be
decreased with caution, because in this case the outermost max-
imum in Eq. (12) will move toward the input plane. The applic-
ability limits of the paraxial approximation were discussed in
Ref. [27].

Fig. 1а depicts the simulation results for a ring aperture
with radii r1¼1 mm and r2¼1.5 mm illuminated by a plane wave
of wavelength 532 nm. From Eq. (11), the rounded-off maxima
positions at z 2350 mm0 ≈ , z 783 mm1 ≈ , and z 470 mm3 ≈
agree with those derived analytically through the integration of
Eq. (2).

The above-derived formulae are also suitable for a circular
aperture. In this case, r 01 = and r R2 = . Fig. 1b depicts the simula-
tion results for a circular aperture of radius R¼1 mm. The maxima
are found at z 1880 mm0 ≈ , z 626 mm1 ≈ , and z 376 mm3 ≈ .

For a two-ring aperture
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the resulting distribution is more complicated
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where x x x( )/2c1 1 2= + , x x x( )/2c2 3 4= + , x x( )1 2 1Δ = − , x x( )2 4 3Δ = − .
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Fig. 1. Intensity along the optical axis for a ring aperture of radii r1¼1 mm, r2¼1.5 mm (а) and r1¼0, r2¼1 mm (b).
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