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We study radially symmetric diffractive optical elements to generate an array of local foci or intensity
zeros in the paraxial region by a certain law. The axial distribution is defined by the spatial spectrum of
the optical element's radial function, enabling the elements to be called longitudinal-spectrum lenses.
The theoretical explanation of the effect is based on the reduction of the Fresnel-Hankel transform to the
one-dimensional Fourier transform. The various lenses are analyzed include those generating long-
itudinal distribution proportional to the Airy and Hermite-Gaussian functions.
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1. Introduction

Generating a particular intensity profile along the optical axis
(coaxial lines, on-axis foci arrays, optical bottles, optical ‘bubble’
arrays, etc.) has been important in a number of metrology appli-
cations [1-4]; for imaging of extended or moving objects for
nondestructive analysis of materials [5-7], as well as for optical
micromanipulation [8-11].

The diffractive optical elements (DOEs) to generate a desired
longitudinal distribution are designed using both analytical [12-
19] and numerical [20-24] techniques.

In this work, we propose radially symmetric DOEs that gen-
erate on-axis local foci arrays, with their distribution defined by
the spatial spectrum of the optical element’s radial function. This
property enables the elements to be called longitudinal-spectrum
lenses.

The theoretical substantiation of the effect is based on the re-
duction the Fresnel-Hankel transform to a one-dimensional
Fourier transform. Although such an approach has been employed
in a number of papers [20,25,26], it was used either to perform the
iterative calculation [20] or to find an axial pattern generated by
fractal zone plates [25,26].

In this work, we study a wider class of DOEs that enable the
generation of definite arrays of foci and/or zero-intensity points,

E-mail address: khonina@smr.ru (S.N. Khonina).

http://dx.doi.org/10.1016/j.optcom.2014.12.023
0030-4018/© 2014 Elsevier B.V. All rights reserved.

including those proportional to the Airy and Hermite-Gaussian
mode distributions.

2. Diffraction in a paraxial region

In the paraxial approximation, the propagation of a radially
symmetric light field is described by the following integral
Fresnel-Hankel transform:

. . 2 0 . 2
Glp, z) = %exp(ikz)exp(lg—’;] fo g(r)exp(l’;—rz)]o(k%)r dr. "

On the optical axis (p = 0), Eq. (1) is simplified

ik ) o ikr?
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and can be reduced to a one-dimensional (1D) Fourier transform by
change of variables [20]. Assuming that the g(r) function is bounded
by radius R, the normalized variables can be conveniently introduced:
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In this case, Eq. (2) takes the form
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which is proportional to the spatial spectrum of the bounded
function

S(u) = /OTg(x)exp(iZnux)dx

- [~ stoect(*

where
rect(i) _ L m<T/2,
T 0, else. (6)
Making use of Eq. (4), distributions corresponding to the spatial

spectrum of the bounded functions can be generated on the op-
tical axis. The intensity on the optical axis

TT/ 2 )exp(iZnux)dx,

2

1
I(u) = 4z°u? fo g(x)exp(i2zux)dx

(7)

satisfies the radiation condition, because it tends to zero at u — 0
(z > ).

Caution needs to be taken when treating the situation atu — oo
(z —» 0), because in this case the paraxial condition can be violated,
thus rendering Eq. (1) invalid.

3. Diffraction by a ring aperture

Below, we analyze a simplest case of a uniform input field on
the ring aperture:

0, 0<r<mn,
1, n<r<m,
0, nh<r, <R (8)

g(r) =

Using Eq. (4), we obtain
X
G(u) = au f 2exp(i2:zux)dx
X1
au . .
= T[EXP(IZMJXZ) — exp(i2zux;)]
R2
= Zlexp( ]exp(thux )sin(zud), ©)
where a = i2nexp(inR2/u,12), X, = (% + %,)/2 is the ring median co-

ordinate, and A = (x, — x;) is the ring's width.
In the initial coordinates and in view of Egs. (7) and (9), the
intensity takes the form
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I(z) = 4sin2[7zr2 f ]
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As it follows from Eq. (10), the same-intensity optical-axis
maxima are found at distances
2.2
' —n
zZ,==———, n=0,1,..
" 2n+ 1)1 (11)
Thus, the relative maxima positions are described by the same
relationship, which is only scaled due to the aperture width. The
outermost maximum from the input plane (z = 0) is found at the
distance

r,? - 12
P (12)

The rest maxima are located closer to the input plane, with the
inter-maximum distance decreasing as

2(r22 - rlz) (rz2 - r12)

= — .
T2+ 120 + 3w 207 (13)
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It stands to reason that at small distances the above
approximation is not valid. The aperture width should also be
decreased with caution, because in this case the outermost max-
imum in Eq. (12) will move toward the input plane. The applic-
ability limits of the paraxial approximation were discussed in
Ref. [27].

Fig. 1a depicts the simulation results for a ring aperture
with radii r;=1 mm and r,=1.5 mm illuminated by a plane wave
of wavelength 532 nm. From Eq. (11), the rounded-off maxima
positions at z;~ 2350 mm, z;~ 783 mm, and z;~ 470 mm
agree with those derived analytically through the integration of
Eq. (2).

The above-derived formulae are also suitable for a circular
aperture. In this case, ; = 0 and r, = R. Fig. 1b depicts the simula-
tion results for a circular aperture of radius R=1 mm. The maxima
are found at z; ~ 1880 mm, z; ~ 626 mm, and z; ~ 376 mm.

For a two-ring aperture

0, 0<r<mn,
y, ST,
, L <T<I3
3T Ty,
, ,<r1, ;<R (14)

o = o =

the resulting distribution is more complicated

G(u) = 21exp(lﬂR )

x [exp(i2zux )sin(zua;) + exp(i2zux,)sin(zua,)], (15)

where X1 = (X + %)[2, X = (X3 + X4)[2, A; = (%, = X)), 4y = (x4 — X3).
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Fig. 1. Intensity along the optical axis for a ring aperture of radii r;=1 mm, r,=1.5 mm (a) and r;=0, r,=1 mm (b).
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