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a b s t r a c t

There are large classes of materials problems that involve the solutions of stress, dis-
placement, and strain energy of dislocation loops in elastically anisotropic solids, in-
cluding increasingly detailed investigations of the generation and evolution of irradiation
induced defect clusters ranging in sizes from the micro- to meso-scopic length scales.
Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for
homogeneous and layered anisotropic solids, we have developed robust and computa-
tionally efficient methods to calculate the displacement fields for circular and polygonal
dislocation loops. Using the homogeneous nature of the Green tensor of order �1, we
have shown that the displacement and stress fields of dislocation loops can be obtained by
numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals
associated with the strain energy of loops can be represented by the product of a pre-
factor containing elastic anisotropy effects and a universal term that is singular and equal
to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-
factor of prismatic loops is identical to the effective modulus of normal contact, and the
pre-factor of shear loops differs from the effective indentation modulus in shear by only a
few percent. These results provide a convenient method for examining dislocation reac-
tion energetic and efficient procedures for numerical computation of local displacements
and stresses of dislocation loops, both of which play integral roles in quantitative defect
analyses within combined experimental–theoretical investigations.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Dislocations are fundamental building blocks in understanding the deformation and failure of crystalline materials by
interactions among themselves, with other point defects such as solute atoms and vacancies, and with three-dimensional
features such as precipitates, cracks, and internal interfaces (Hirth and Lothe, 1982). With decreasing materials micro-
structure scales and applications under extreme conditions such as high temperature and irradiation, it is imperative for
dislocation mechanics analysis to quantitatively examine anisotropic elastic interactions (Norfleet et al., 2008; Kwon et al.,
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2013; Xu et al., 2013) and to address the roles of nanostructure features (Hoagland et al., 2006; Zhang et al., 2012; Feng and
Freund, 2010). In many cases, analytical solutions are not available for applications that involve complex geometric features
and dislocation evolution, so large scale computational investigations based on discrete dislocation dynamics have been
routinely used in recent years (Nicola et al., 2003, 2005; Zhang et al., 2014; Cai et al., 2001; Yin et al., 2012). Undoubtedly
these calculations are slow because of the larger number of degrees of freedom and the computationally intensive eva-
luation of individual dislocation segments. The latter becomes more demanding for anisotropic elasticity analysis since
closed-form solutions in real space exist only for the isotropic elastic case. Therefore, significant effort has been devoted to
addressing the computational efficiency of dislocation dynamics in three-dimensional anisotropic, heterogeneous solids
(Nicola et al., 2003; Yin et al., 2012).

The other challenge in dislocation mechanics in three-dimensional anisotropic, heterogeneous solids is the calculation of
displacement fields generated by defect clusters. In current dislocation dynamics simulations, stress fields are used in a
linear superposition scheme, so that a boundary value problem without dislocations, but subjected to complex traction
boundary conditions, is of the central interest. For stress field calculations, the computational cost can be reduced by taking
advantage of the homogeneous nature of the Green tensor in Fourier space, such as the use of the fast multipole method
(Yin et al., 2012). Stress calculations require the evaluation of a line integral along dislocation segments, and displacement
calculations are challenged by a surface integral over the dislocated area. When dealing with anisotropic elasticity in the
absence of a closed-form solution in real space, Fourier transformation is required but it introduces another double integral.
Complicating performance of the computations further is the fact that displacement fields are discontinuous (by a Burgers
vector jump) over the dislocated surface. This is much harder to deal with than the stress singularity near the dislocation
core, for which a cutoff radius can be introduced.

We comment also that two-dimensional defects such as cracks can be modeled based on the dislocation density, where
the dislocation density field can be solved by differential–integral equations (Suo, 1990; Bower and Ortiz, 1990). The in-
tegrands are essentially the displacement fields generated by unit dislocation segments. These problems suffer the same
difficulties as the evaluation of displacement fields in dislocation mechanics, i.e., the cumbersome evaluation of double or
quadruple integrals with singular kernels. This method becomes computationally intractable for the study of randomly
distributed cracks in three-dimensional solids.

While stress components are of central interest in the above mentioned dislocation dynamics computations as well as for
defect interaction phenomena, displacement fields associated with dislocations are required to characterize dislocation
distributions. For instance, the displacements introduced by the local rotations and elastic strains associated with dis-
location loops can be used to compute diffraction contrast (Bullough et al., 1971; Schäublin and Stadelmann, 1993; Schäublin
et al., 2000) for direct imaging of loops by both conventional and high-resolution electron microscopy. Similarly, the dis-
placements form the basis for calculating diffuse x-ray diffraction-scattering cross-sections for dislocation loops. These
cross-sections in turn make it possible to use x-ray diffuse scattering measurements to determine the loop size, their
vacancy-interstitial type, and also the orientations of dislocation loops in neutron and ion-beam irradiated materials (Larson
and Schmatz, 1980; Larson and Young, 1987; Ehrhart and Averback, 1989; Nordlund et al., 2000). Diffuse scattering near
Bragg reflections provide a non-destructive tool complementary to transmission electron microscopy (TEM) for studying
small dislocation loops that are hard to resolve by direct imaging.

An example in which the determination of the orientations and sizes of small and large dislocation loops is required is in
obtaining an experimental confirmation of the recently proposed mechanisms of Xu et al. (2013) for the formation and
growth of sessile o1004 interstitial loops in irradiated bcc Fe and Fe-based alloys through reactions between glissile
½o1114 interstitial loops. The energy gain associated with such reactions (which interestingly do not obey the Burgers
geometric relationship) is not large and the small size of interstitial loops in room temperature irradiated Fe samples
hampers ambient temperature TEM studies of the evolution of loop orientations and sizes associated with the proposed
mechanism. High-temperature in situ electron microscopy investigations of ion-irradiation in Fe have reported large, sessile
o1004 loops (Yao et al., 2010). However, detailed confirmation of the proposed mechanism of Xu et al. (2013) for the
growth of sessile o1004 loops by interaction of glissile ½o1114 loops at high temperature is just now in progress (Cui
and Robertson). Because of the smaller sizes of the loops at room temperature, x-ray diffuse scattering investigations based
on numerically calculated displacement fields for o1004 and ½o1114 dislocation loops in Fe can be used in conjunction
with TEM for analyzing the dislocation loop orientations and evolution.

Yet another important application of three-dimensional anisotropic elastic analysis of dislocation loops is the dislocation
energy (Bower, 2009). For line dislocations, the two-dimensional elastic analysis gives rise to the following self-energy
density:
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where E is the Young's modulus, ν is Poisson's ratio, bedge and bscrew are Burgers vectors, and 0ρ and R are core and faraway
cutoff radii, respectively. For dislocation loops with radius of a, the self-energies are
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