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a b s t r a c t

We analyze the edge diffraction of circular Laguerre–Gaussian beams LG02 and LG03 carrying multi-
charged optical vortices (OVs), with special attention to spatial properties and evolution of the diffracted
beam. The problem is considered numerically within the frame of paraxial approximation and the
Fresnel diffraction theory. The diffracted beam evolution is interpreted on the basis of the incident beam
symmetry breakdown and decomposition of a higher-order OV into a set of single-charged secondary
OVs. Upon propagation, the separate OVs describe specific trajectories within the diffracted beam cross
section but in the far field they are localized on the symmetry axis parallel to the screen edge. The OVs'
positions in each cross section reflect information of the screen edge position with respect to the incident
beam axis. If the incident OV is stopped by the screen, the diffracted beam possesses no OV just behind
the screen but in the course of its further propagation, single-order OVs appear consecutively so that in
the far field the number of OVs equals to the absolute topological charge of the incident OV. Possible
applications for the remote measurements of small linear displacements are discussed.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Light beams with optical vortices (OV) [1–4] attract a steady
interest due to their unique physical features. The singularity in
the transverse phase profile (so called screw wavefront disloca-
tion) with zero amplitude in the OV core is accompanied by the
circulatory component of the energy flow thus forming the gen-
uine vortex-like motion of the light energy. Such beams can
spontaneously emerge during the laser generation [5] as well as be
deliberately produced from the usual rectangular Hermit–Gaus-
sian modes by means of astigmatic mode correctors [6]; the most
suitable and efficient ways for their generation employ special
optical elements creating the wavefront singularity: spiral phase
plates [7], holographic elements with groove bifurcation (“fork”)
[8,9], etc. The transverse energy circulation (TEC) is coupled with
corresponding mechanical properties, especially, the orbital an-
gular momentum (OAM) of the beam with respect to the propa-
gation axis, which is used in many applications, e.g. for micro-
manipulation technique [10,11]. However, more important is that
the special pattern of the energy flow in OVs makes them in-
formative and suitable physical objects for the study of deep
fundamental aspects associated with the internal energy flows in
light fields [12].

Among numerous physical manifestations of the specific OV
peculiarities, the most immediate and physically spectacular ones
are realized in the effects that accompany the OV beam propaga-
tion in presence of obstacles; even the tiny perturbations asso-
ciated with the beam reflection or refraction at a smooth interface
introduce the specific “topological aberrations” in the OV structure
[13]. Stronger transformations of the beam configuration are
coupled with the diffraction phenomena, in particular, those re-
lated to the edge [14–22], slit [17,21] and strip [22,23] diffraction.
The special features of the OV beams’ diffraction are employed for
the OV detection and diagnostics [22–25] and even can be useful
for the subwavelength optical metrology [26–29]. Together with
the explicit demonstration of the circulatory flow pattern that
“comes to light” due to the OV symmetry violation [12,30], the
particular nature of the OV beams manifests itself in intricate
behavior of the “post-diffraction” singular structure. Depending on
the position and shape of an obstacle, the beam OV may “tem-
porary” disappear but regenerate in the course of further propa-
gation; the “survived” OVs normally displace from the nominal
incident beam axis and evolve along certain trajectories; addi-
tional “secondary” OVs may appear, and the whole set of these
singularities (“singular skeleton”) participate in complicated to-
pological reactions: during the diffracted beam propagation, OVs
may emerge, migrate, annihilate and their morphology experi-
ences continuous transformations [14–20,26,27,30,31].

All the above facts are important not only for actual and po-
tential applications but also for better understanding of the
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peculiar properties of the OVs and associated physical phenomena.
This is why the systematic investigation of the OV diffraction is a
relevant and insistent task. In the recent works [31,32] we have
started a comprehensive theoretical development of this problem
including two complementary aspects: (i) analysis of the trans-
verse energy redistribution over the diffracted beam on the basis
of the universal approach for the TEC description which recognizes
two different forms of the TEC – “vortex” and “asymmetry” TEC –

that characterize, from very general positions, evolution of an ar-
bitrary asymmetric beam profile [30,33] and (ii) direct calculation
of the OV skeleton and its evolution during the diffracted beam
propagation. In particular, there was demonstrated applicability of
the “vortex” and “asymmetry” constituents of the beam OAM,
based on the beam characterization via the space-angle irradiance
moments [34–38], for characterization of the TEC in diffracted OV
beams. However, the study in Refs. [31,32] was restricted to the
simplest case of diffraction of a single-charged (first-order) La-
guerre–Gaussian (LG) beam with radial and azimuthal indices
p¼0, |l|¼1. This case is important since it represents a standard
generic physical model of a usual OV beam but it does not include
interesting situations associated with high-order OVs whose dif-
fraction demonstrates the TEC in OV beams in the most evident
and impressive way [21,22].

In this paper we represent a further development of the con-
cepts and approaches of Refs. [31,32] in application to the dif-
fraction of higher-order OV beams, especially with |l|¼2 and 3. In
particular, we show that diffraction of an OV beam can be inter-
preted in terms of the beam symmetry breakdown which is
commonly known to be accompanied by decomposition of a
multicharged OV into a set of |l| secondary single-charged OVs. In
the diffracted beam, each of these OVs evolves in its particular
manner and, together with the diffraction-generated “additional”
OVs, form a complicated “OV skeleton” rich in interesting and
physically meaningful details.

2. Mathematical formulation

In this paper, we consider the diffraction of a paraxial mono-
chromatic light beam with frequency ω and the wavenumber
k c/ω= (c is the light velocity), for which the electric field t( ) is
characterized by the complex amplitude E defined as

t Ee( ) Re [ ]i t= ω− . Let the beam propagate along axis z; then
E E x y z u x y z ikz( , , ) ( , , ) exp ( )≡ = where x y( , ) are coordinates in
the transverse plane, function u x y z( , , ) slowly varies on the wa-
velength k2 /λ π= distance scales. Let the diffraction obstacle
(screen) be situated in the transverse plane z¼0, and the trans-
verse coordinates in this plane be marked by the subscript a (see
Fig. 1). The incident circularly symmetric OV beam is taken in the
form of LG0m mode [39] and in the screen plane its complex am-
plitude distribution obeys the equation
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In this expression, dimensionless coordinates are used so that
x y, are measured in units of the Gaussian envelope radius b
[31,40]; accordingly, the longitudinal coordinate is suitably mea-
sured in units of the Rayleigh range z kbR

2= . For example, if the
incident beam wavelength is 632.8 nmλ = (He–Ne laser radiation)
and the radius b 0.1= mm, z 100R = mm. Expression (1) supposes
that the incident beam approaches the obstacle in its waist cross
section but this implies no serious limitation since the situation of
arbitrary wavefront curvature can be readily reduced to the case of

plane wavefront by merely rescaling the final results [31].
Now consider diffraction of this beam at a half-plane screen in

the Kirchhoff–Fresnel approximation [39,41]. If the screen edge is
parallel to the x-axis and its position with respect to the incident
beam axis is characterized by the dimensionless distance a (again
in units of b), the beam complex amplitude in the transverse plane
situated at the longitudinal distance z (in units of zR) behind the
screen (see Fig. 1) is determined by the equation of evolution
(Fresnel diffraction integral) [31,41]
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In case of m¼1 in Eq. (1) this integral has a convenient ana-
lytical representation [17], which strongly facilitates the theore-
tical calculations [31,32]. With growing OV order, analytical re-
presentation is still available but becomes cumbersome, difficult to
interpret [17,18] and does not help in calculations so the main
body of this paper is devoted to the numerical investigation of Eq.
(2) and its consequences.

3. Numerical examples and calculations

The evolution of the diffracted beam obtained after the edge
diffraction of an LG beam (1) with m¼2 and m¼3 is illustrated by
Figs. 2–5 calculated via Eq. (2); all the images represent the in-
tensity or phase distribution over the beam cross section, visible
against the beam propagation; the TEC in the incident beam is
directed counter-clockwise. Each column of Figs. 2–5 represents
evolution of the diffracted beam obtained for a fixed degree of the
incident beam shading; conventionally, it is suitable to segregate
the regimes of weak (ao�0.5, the screen only “cuts” the per-
iphery of the beam cross section), moderate (–0.5oao0, the
screen strongly perturbs the beam but the axial OV is not covered)
and severe (a40, the incident beam OV is stopped) shading.

It is seen that just after the screen (1st–3rd rows of Figs. 2 and
3) the beam intensity pattern evolves asymmetrically: at xo0, the
beam energy spreads into the shadow region while at x40 it
apparently moves “back” from the geometrical projection of the
screen edge into the “bright” region so that finally main part of the
beam energy is concentrated in the xo0 half-plane (rows 2–4 of
Figs. 2 and 3). This behavior is a confirmation of the circulatory
character of the transverse component of the energy flow within

z, za 

x, xa 

y, ya 

Incident 
beam 

a 

y 

x 

Fig. 1. Geometrical conditions of the diffraction.
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