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a b s t r a c t

We present an approach for design of Fresnel zone plates (FZPs) with different focusing manners. By re-
performing the formula for calculating the half-wave zones of a conventional FZP into wave vector do-
main, we get a wave vector integral formula, by which the half-wave zones of a generalized FZP could be
derived from the wave vector distribution of the expected focusing beams. As examples, we analyzed the
situations with, respectively, a circular focusing manner and a line focusing manner, and successfully
derived, for the first time to our knowledge, the analytic expressions for calculating the corresponding
half-wave zones of the expected FZPs. Some simulations in X-ray domain demonstrated the feasibility of
the method and the derived formulas.

& 2014 Published by Elsevier B.V.

1. Introduction

Fresnel zone plates (FZPs) [1] are a typical class of diffractive
optical elements, which can perform tasks that are difficult, or
even impossible, with conventional refractive optics. For example,
focusing and imaging of extreme ultraviolet (EUV) and X-ray ra-
diations at wavelengths from approximately 0.1 to 100 nm are
often indispensable in high-resolution X-ray microscopy and
spectroscopy [2–8]. However, for these purposes, the use of con-
ventional refractive lenses is not practical, because at these wa-
velengths all materials are strongly absorbing and the values of the
refractive index are very close to 1. FZPs consist of circular dif-
fraction gratings with radially increasing line density, which can
diffract and focus the incident X-ray beam into several foci. They
offer the advantages of simple fabrication, thin profile and low
cost, but the focal spot size of a traditional FZP is approximately
the order of the width of the outermost half-zone and so its spatial
resolution is limited by the smallest structure the present fabri-
cation technology could reach. Nowadays, the resolution of the
best zone-plate optics have reach sub-10 nm at best because of the
introduction of nanofabrication technology and use of high-bril-
liance synchrotron radiation beams, [9,10] which is leading to an
increased applications in material science, biology and medicine
[11–15].

For further improving the focusing qualities of the FZPs
and extending the wavefront transforming ability, recently, some

improved structures of FZPs have been developed and applied
[16–27]. However, most of the existing FZPs still are designed ac-
cording to the conventional “point focusing” model, which limit
further improvement of the focal spot profile and the focusing
trajectory required in different applications.

Here we present a more general formula for design of different
types of FZPs with different focusing manner and focal spots. By
re-performing the formula for calculating the half-wave zones of a
conventional FZP into wave vector domain, we get a wave vector
integral formula, by which the half-wave zones of a FZP could be
determined from the wave vector distribution of the expected
focusing field. As examples, we further analyzed the situations
with, respectively, a circle focusing manner and a line focusing
manner, and successfully derived, for the first time to our
knowledge, two analytical expressions for calculating the corre-
sponding half-wave zones of the expected FZPs.

2. Principle

Let us begin with design of the conventional FZPs based on the
‘point focusing’ manner as shown in Fig. 1(a). The ‘point focusing’
is so called because it assumes that all the designed rays (in other
words, the wave vectors) are converged upon a single point, the
focal point F. Based on such model, the half wave zones of a FZP
can be determined by

r z r z m
2 (1)m

2
0
2

0
2

0
2 λ+ − + =

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/optcom

Optics Communications

http://dx.doi.org/10.1016/j.optcom.2014.12.003
0030-4018/& 2014 Published by Elsevier B.V.

n Corresponding author.
E-mail address: guochsh@sdnu.edu.cn (C.-S. Guo).

Optics Communications 341 (2015) 32–36

www.sciencedirect.com/science/journal/00304018
www.elsevier.com/locate/optcom
http://dx.doi.org/10.1016/j.optcom.2014.12.003
http://dx.doi.org/10.1016/j.optcom.2014.12.003
http://dx.doi.org/10.1016/j.optcom.2014.12.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2014.12.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2014.12.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2014.12.003&domain=pdf
mailto:guochsh@sdnu.edu.cn
http://dx.doi.org/10.1016/j.optcom.2014.12.003


or

( )k r z r z m , (2)m
2

0
2

0
2

0
2 π+ − + =

where k 2 /π λ= is the wave number of the beam, λ is the wave-
length, r0 is the start radius, rm is the radius of the m-th half wave
zone, and z0 is the distance to the focal point, the focal length of
the FZP.

Fig. 1(b) shows another more general focusing manner, ‘curve
focusing’, in which the designed wave vectors are focused on or

tangent to the curve Γ
→
. Obviously, Eqs. (1) and (2) are not ap-

plicable to this case. To find a more general formula suitable for
different focusing manners, we try to transform Eq. (2) into wave
vector domain. Because the differential of Eq. (2) is equal to
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Eq. (2) can be rewritten as
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component of the expected field along the radial coordinate di-
rection on the FZP plane. It can be seen that the half wave zones of
the FZPs can be determined by a path integral of the wave vectors.
Further, according to the physical meaning of the path integral of
wave vectors, we think that Eq. (4) could be extended from the
point focusing manners to other focusing situations such as the
curve focusing case shown in Fig. 1(b), and it could be further
expressed as the more general form in terms of vectors as follows:
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here k r( )
→ → is the wave vector distribution of the expected beams

on the FZP plane, which could be determined by the designed
focusing manners. For example, if the focusing wave vectors are
supposed to be tangent to a curve { }r t x t y t z t( ) ( ), ( ), ( )c c c c

→ = , because
the tangent vectors of the curve can be generally expressed as
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where r t( )c
→′ is the derivative of the vector r t( )c

→ , so the wave vector
tangent to the curve can be determined by
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If the designed FZP is circularly symmetric and located in a
plane perpendicular to the optical axis (for example, the co-
ordinate z axis in the following situations), the trajectory equation
can be expressed as
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and Eq. (5) can be simplified into
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in which, the coordinate rc of the curve and the corresponding
coordinate r on the FZP plane are related to
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To verify the feasibility of Eq. (5) in design of FZPs with dif-
ferent focusing trajectory, next we try to determine the half wave
zones of a FZP with circular focusing manner (that is, the wave
vectors are all tangent to a circular arc) as shown in Fig. 2(a) for
the first demonstration.

Suppose the radius of the circular arc is a, and the distance
between the circle center located on the z axis and the FZP plane is
z0. Its curve equation can be written as
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Substituting Eq. (11) into Eq. (9), we get
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Because it can be derived from Eqs. (10) and (11) that (here the
FZP is set to be located at the plane of z¼0)

z z
ar r z a a z

z r
( )

( )
,

(13)
c 0

2
0
2 2 2

0

0
2 2− =

+ − −
+

Eq. (12) can be further expressed as
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Fig. 1. (a) point focusing manner of a conventional FZP and (b) curve focusing manner of a general FZP.
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