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a b s t r a c t

Dielectrically chiral micro-structured optical fibers with solid-core squeezed structure were investigated
using plane-wave expansion method. The modal dispersion, birefringence and polarization of the fun-
damental modes were studied in detail. Numerical results show that between chirality and squeeze there
exist a cooperative effect in birefringence and a competitive effect in polarization.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Microstructured optical fibers (MOFs) or photonic crystal fibers
can confine light in the core surrounded by a cladding with reg-
ularly arranged rods or holes. Most of the MOFs are made of silicon
[1–6] and polymer [7–14]. Compared with silicon, polymer has a
wider range of processing option for performs, including casting,
drilling, stacking and squeezing, which allows us to produce a
variety of structures very easily and cheaply. In addition, polymer
has better mechanical property and lower processing temperature,
which permits larger squeeze degree and a wider range of organic
and inorganic dopants. Even though the polymer has larger ab-
sorption loss [11], it fascinating many advantages as aforemen-
tioned. Microstructured polymer optical fibers were intensively
investigated and were found its wide applications in networks
including fiber to the home (FTTH) and high speed connections
within or between electronic consumers.

Generally, the non-uniform collapsing in the manufacture of
MOFs will cause a deformation of the ideal lattice structure. The
deformation in a given location and direction may result in the
complexity in polarization states of guided modes. Usually the
deformation occurs on a scale comparable with the wavelength of
interest, which is named structural asymmetry relative to the
asymmetry at the level of molecules composing the materials,
such as the dielectric chirality involved in this paper.

Chirality is a geometrical concept, describing an object which
cannot be superimposed on its mirror image through any trans-
lation or rotation. The materials with chirality could possess

circular birefringence and circular dichroism. Chiral MOFs can be
classified into dielectrical ones [15–21] and structural ones [22–
30]. The former can be made by means of doping chiral molecules
or synthesis of chiral monomers in the entity sections, where the
scale of chiral monomer is far less than the wavelength of interest
[8,9,19]. Then chiral MOFs may be fabricated like the polymer MOF
that the fabrication scheme can be divided into two-step processes
[11]. First, the chiral preform can be fabricated by drilling, stacking,
casting/molding, modest extrusion and solvent deposition. Sec-
ond, once the chiral preform is completed and it can be drawn to
cane and fiber. The second method is that the common preform is
firstly produced as polymer one and the chiral molecules permeate
into the preform by chiral solution. Then the chiral preform can be
drawn cane and fiber. In the process, the positive or negative
pressure can be applied at some stage of the microstructure as
required. While for the latter, the chirality may be introduced by
twisting the fiber core or cladding in a scale comparable to the
wavelength of interest. Investigations have indicated that circu-
larly polarized modes are supported by chiral MOFs with circular
holes [17], even for the case of an elliptical core with strong
chirality [16].

Generally speaking, the squeeze of holes or lattice brings linear
birefringence for achiral MOFs [33], which can be applied in lin-
early polarized testing and sensoring element [34–37]. Whereas
for chiral MOFs, the case becomes more complicated. Without
squeeze, arbitrarily weak chirality would lead to circular bi-
refringence [17]; with the introduction of squeeze the elliptical
birefringence appears, but if the chirality is strong enough, the
elliptical birefringence will degenerate to circular birefringence
again [15,16]. In this paper, we theoretically investigate the
squeezed chiral triangular-lattice holey fiber. It mainly focuses on
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the competition and cooperation between the squeeze in structure
and the chirality in medium in the modal birefringence, polar-
ization and dispersion.

2. Model and theory

2.1. Model for chiral MOFs

The diagram of a chiral MOF is shown in Fig. 1, where the dark
background (with subscript 1) and the holes (with subscript 2)
denote the chiral medium and air holes, respectively. In this paper,
the chiral MOFs are viewed as squeezed with the same proportion
in the holes and lattice along a certain characteristic direction (for
example, the six fold symmetry axis or its orthogonal direction for
triangular lattice), keeping the orthogonal scale unchanged. After
being squeezed, the lattice is no longer equilateral triangular and
for convenience the holes may be considered as elliptical ones,
whose major and minor axes a and b respectively. Where b¼ae
and e denotes the ellipticity of holes or the squeeze degree. Note
that the case of e¼1 corresponds to a non-squeezed chiral MOF
with circular holes and equilateral triangular lattice. While
0oeo1 means the vertical squeeze, and the smaller the e, the
stronger the squeeze. Similarly, e41 indicates the horizontal
squeeze, and a larger e implies a stronger squeeze. We only discuss
the case of vertical squeeze, considering the similarity in the dis-
persion relation and polarization characteristics of guided modes
with the case of horizontal squeeze. Thus the distance between
adjacent holes in two orthogonal directions can be expressed as
Y¼eΛ and X¼Λ tan(π/3), where Λ is the lattice constant without
squeeze. Through the whole article, a and Λ are fixed as 0.9167 μm
and 2.2 μm.

In order to describe the dielectrically chiral background,
Drude–Born–Fedorov's constitutive relations D¼ε0εr(Eþξ∇�E),
B¼μ0μr(Hþξ∇�H) were adopted, where the chirality parameter
or the strength of chirality ξ is related to the specific rotary power
δ of the chiral medium through k n0

2 2δ ξ= − , in which k0¼2π/λ and
n r rε μ= represent the wavenumber in vacuum and the mean
refractive index of chiral medium. For convenience, the strength of
chirality ξ will be characterized with specific rotary power δ, and
thus the air can be viewed as a chiral medium with δ¼0.

2.2. Plane wave expansion method

In order to simulate the chiral MOFs, a modified plane-wave
expansion (PWE) method is employed and the wave equation for
the vectors of magnetic field is [16]
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where the material is considered as non-magnetic. H and the
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In a MOF, wave vector k corresponds to propagation constant β ,
thus the wave equation becomes an eigen-equation about the
propagation constant β
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where s is the number of plane-waves, h denotes a Cartesian
component of the nth Fourier component of magnetic field H(Gn),
and coefficient A, B and C are related to the basis vectors and re-
ciprocal space vectors [17].

In the simulation, we choose polymethyl methacrylate (PMMA)
doped griseofulvin as the background of chiral MOFs. The more
dilute dopant can hardly affect the material dispersion of PMMA
[32], so without loss of generality, we describe the material dis-
persion of n with the formula for the pure PMMA. For instance,
n A l1 /( )i i i

2
1

3 2 2 2Σ λ λ− = −= , where A1¼0.4963, l1¼71.8 nm,
A2¼0.6965, l2¼117.4 nm, A3¼0.3223 and l3¼9237 nm [32]. Chir-
ality is introduced by griseofulvin with solution doping technol-
ogy, and the corresponding optical rotatory dispersion could be
expressed by the empirical Boltzmann formula δ¼B1/λ2þB2/λ4

þ⋯, where the first two terms are dominant and the coefficients
are related to doping concentration [31]. Here we employ
B1¼1.46�104° nm2/mm and B2¼1.82�1010° nm4/mm as in the
literature [31].

2.3. Description of polarization

Generally, the distributions of intensity and polarization of a
guided mode in chiral MOFs are not uniform on the cross section.
However, the polarization distribution in the core represents the
main characteristics of a guided mode, since the intensity is
mainly confined in the core. As an example, Fig. 2 shows the dis-
tributions of intensity and polarization for the paired fundamental
modes in a squeezed chiral MOF, where the localized and nor-
malized third Stokes parameter s3 is employed to characterize the
modal polarization. One can see that the light intensity is mainly
confined in the core, in which the polarization is rather uniform.
Thereby we may introduce a single number

S s E dS E dS/ (4)core core
3 3

2 2∬ ∬= | | | |

which ranges from �1 to þ1 to characterize the modal polariza-
tion. Negative and positive values of S3 respectively indicate left-

Fig. 1. Schematic diagram of a squeezed chiral MOF.

S. Li et al. / Optics Communications 341 (2015) 79–8480



Download English Version:

https://daneshyari.com/en/article/7930069

Download Persian Version:

https://daneshyari.com/article/7930069

Daneshyari.com

https://daneshyari.com/en/article/7930069
https://daneshyari.com/article/7930069
https://daneshyari.com

