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a b s t r a c t

The resonant second harmonic generation in the presence of a wiggler magnetic field by twisted laser
plasma interaction is surveyed. The wiggler magnetic field provides additional momentum required for
the phase matching. The Laguerre–Gaussian modes can be used to control the self-focusing and improve
the second harmonic generation in laser plasma interaction. The wave equations for the fundamental and
the second harmonic fields have been solved in the paraxial approximation. The generation of the second
harmonic considering self-focusing is investigated. Also, the dependence of the second harmonic power
on the propagation distance for different values of initial fundamental beam intensity, vortex charge
number of the doughnut main beam and plasma density has been obtained.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear interaction of the intense laser beam with plasmas
has been the subject of many experimental and theoretical studies
in the recent years due to their important role in a large number of
high power laser applications, such as X-ray lasers [1–3], laser-
driven particle accelerators [4–6] and harmonics generation [7–
12]. Generation of harmonic radiation is an important issue of
laser plasma interaction and attracts great attention of a number
of researchers. It is well known that the electromagnetic beams
with a nonuniform distribution of irradiance along the wavefront,
such as Gaussian, Hermite–Gaussian and Laguerre–Gaussian (LG)
beams, present the phenomenon of self-focusing/defocusing. For a
given power of the main beam, the average of the square or cube
of the electric vector in the wavefront for nonuniform irradiance
distribution is much higher than that for uniform irradiance. Since
the magnitude of the generated harmonic is higher in the case of
nonuniform irradiance than the uniform irradiance case, there was
a need to take into account this nonuniformity in the theory of
harmonic generation. The mechanisms associated to the pattern of
steep density gradients [13–15], ponderomotive force [16] and
parametric decay instability [17,18] for second harmonic genera-
tion have been studied in the initial investigations. The second and
third harmonic generations for the sake of relativistic nonlinear
effect have also been extensively investigated [19–23]. Also, the
second harmonic generation by Gaussian mode in the non-

relativistic regime of laser plasma interaction is surveyed [24,25].
The applications of harmonic combination frequency generation in
the ionosphere have been indicated by Gurevich [26], and recently,
the third harmonic generation due to a Gaussian laser beam has
been studied in a clustered gas [27] and in a tunnel ionizing gas
[28]. Since the Laguerre–Gaussian (LG) modes can be used to
control focusing forces and improve the electron bunch quality in
laser-plasma accelerators [29], in the present paper, generation of
second harmonic in the presence of a wiggler magnetic field due
to the propagation of a high irradiance LG beam in plasma is
proposed and studied. LG beam with helical wavefront and in-
tensity profile consists of a ring of light beam carrying orbital
angular momentum[30,31], can be twisted like a corkscrew about
the axis of propagation, has zero intensity at its center and hence
also popularly named as twisted light. LG beam can be described
by phase singularity on axis with strength l, called the optical
vortex charge number, and radial index p [32]. The nonlinearity
arising through ponderomotive force caused by the wave magnetic
field and the wiggler magnetic field leads to a redistribution of
carriers, which modifies the background plasma density profile in
a direction transverse to fundamental beam axis [10]. When an
intense laser beam acts on plasma, ponderomotive force of the
focused beam (caused by the wave magnetic field) pushes the
electrons out of the region of high intensity, reducing the local
electron density, which leads to the further increase of the plasma
dielectric function and consequently an even stronger self-focus-
ing of the laser beam occurs [33]. In consequence, on account of
the nonuniform radial distribution of irradiance in the beam in the
presence of wiggler field, there is a corresponding distribution of
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electron density and in addition to the fundamental frequency, a
second harmonic of frequency is generated. In this paper, the
Source Dependent Expansion (SDE) method is used [34], which is
a general method for solving the paraxial wave equation [35] with
nonlinear source terms. Actually, the SDE method is employed to
derive an equation which governs the evolution of the laser beam
width.

The remaining part of paper is organized as follow: in the
second section, an expression for the wave equation in the pre-
sence of a transverse current density caused by wiggler magnetic
field by considering ponderomotive force nonlinearity is derived;
then, we have followed-up solution of this equation. Also, the
second harmonic generation due to the ponderomotive force
nonlinear effect is discussed theoretically. The third section is
devoted to the numerical investigation for the second harmonic
generation and in this section a discussion of results is presented.
Finally, in the last section, a brief conclusion has been summarized.

2. Theoretical analysis

2.1. Wave equation

In the presence of the wiggler magnetic field, consider a line-
arly polarized (in the x-direction) propagation of a high irradiance
LG electromagnetic beam of frequency ω in the z-direction in
plasma. The propagation of a laser beam in plasma medium and
wiggler field is characterized by
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− . The origin of second
harmonic generation in laser plasma interaction is the radiation of
second harmonic current density produced by the force of laser
magnetic field in Lorentz force. Here, c is the speed of light in
vacuum, ϵ0 is the vacuum permittivity, kw is the wiggler wave
number, Bw is the amplitude of wiggler field, E1 and E2 E E( )2 1≪ are
the amplitudes of the linearly polarized fundamental and second
harmonic beams, respectively. It has been assumed in writing Eq.
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electromagnetic wave obey the dispersion relation
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0ω = ϵ is the plasma frequency, n0 is the electron
density, e is the charge of electron and me is the electron rest mass.
Since k k22 1> , for the phase matching, the difference of momen-
tum can be provided to the second harmonic photon by the
wiggler wave number i.e. k k k2 w2 1= + . The periodic wiggler field
causes to produce a one-dimensional photonic crystal with wave
number kw along the z-direction. Both k1 and k2 are in the z-
direction, hence k2 must be in the z-direction also. The second
harmonic is polarized in the x-direction [36]. The laser beam
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and exerts a ponderomotive force on them. Niti Kant et al. [10]
derived the nonlinear current density caused by wiggler magnetic
field as the source of a second harmonic wave with the electric
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As it is expected, the second harmonic current density is pro-
portional to the fundamental frequency intensity, this effect in

cooperating with self-focusing causes the oscillation of second
harmonic intensity and conversion efficiency versus the normal-
ized propagation distance. Numerical results are presented in
Section 3 of the paper.

The second harmonic field also produces a linear current
density:
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Substituting for E
→

in Eq. (1), then following Sodha et al. [33] for
using expression of nonlinear plasma permittivity, considering the
plasma current density and separating i texp( )ω− and i texp( 2 )ω−
terms, one obtains the wave equations governing the fundamental
and second harmonic fields:
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2 2

0η ω= , KB and T0e are the Boltzmann constant
and the plasma equilibrium temperature, respectively [33].

For a main LG field E1, Eq. (4a) can be solved through the ex-
plained analysis by reference [34]. The solution is obtained by
substituting in Eq. (4a) as
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k c( / ) ( )1 10ω ω= ϵ′ is the wave number and 1 /p10
2 2ω ωϵ′ = − is the

linear plasma permittivity of the main beam.

From the second order differential equation for A1
→
, one can

neglect A z/2
1

2∂
→

∂ assuming the beam to be slowly converging or
diverging. For linearly polarized waves, the vector form of E1 or A1

can be taken as a scalar form. On the basis of paraxial approx-
imation, the amplitude of the fundamental electric field E1 is de-
noted by A r z( , , )1 ϕ , which satisfies the following equation:
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Applying the SDE method (algebraic details can be found in
[37,38]), one can derive the evolution of the beam width para-
meter for doughnut LG beams (LG beam with p index equal to
zero) in the form
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where w0 is the initial main beam width, r w2 /1
2

1
2ξ = and

f w w/1 1 0= , Z z z/ R= (z kw /2R 0
2= is the Rayleigh length). In Eq. (8),

A( ) l1 0, on the right-hand side of equation in the integral is complex
amplitude of the main doughnut beam:
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