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a b s t r a c t

We review and compare several measures that identify quantum states that are “macroscopically
quantum”. These measures were initially formulated either for photonic systems or for spin ensembles.
Here, we compare them through a simple model which maps photonic states to spin ensembles. On one
hand, we reveal problems for some spin measures to handle correctly photonic states that typically are
considered to be macroscopically quantum. On the other hand, we find significant similarities between
other measures even though they were differently motivated.
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1. Introduction

The first experiments that triggered the development of quantum
mechanics were conducted by relatively simple means. After the
theoretical framework has been established, the effort to experimen-
tally verify some much more demanding predictions like

entanglement and nonlocality increased significantly. Nowadays, we
master experimental techniques that even led to commercial products
such as secure communication and true random number generators.
Furthermore, it is by now possible to enter the quantum regime of
“large” systems; large either in terms of mass, energy or number of
involved microscopic constituents. Among other contributions, experi-
menters brought superconducting devices [1–3] andmassive mechan-
ical oscillators [4,5] to the quantum regime; one observed interference
effects with giant molecules [6], entangled diamonds [7], cells [8],
doped crystals [9] and large spin ensembles [10–12]; we also
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witnessed entanglement between optical modes including hundreds
of photons [13,14]. Arguable, all these experiments show quantum
behavior in large systems. But how could one compare them? In
which sense is one more macroscopically quantum than another one?
Answers to these and similar questions would allow us to challenge
old but still unsolved problems. One of those is the transition between
microscopic and macroscopic domains. How and in which sense do
large systems become “classical”—after all, they are composed of
microscopic particles that are quantum mechanically in nature? Some
proposals try to answer suchlike questions within quantum theory.
For instance, the decoherence program [15] provides a mechanism for
the loss of quantum correlations that typically becomes stronger for
larger systems. Other ideas suggest a solution by extending the theory
as it is done, for example, in collapse models [16,17]. Clearly, these
efforts are important for problems concerning the validity and
interpretation of quantum mechanics. As well, they immediately yield
a practical aspect, for instance, in view of efforts to realize large-scale
quantum computing.

Against this background, it is somehow astonishing that a
commonly accepted framework of “macroscopic quantum physics”
is still lacking. The famous gedanken experiment of Schrödinger [18]
ponders on the existence of large objects in a superposition of two
classical, distinct states like a cat being dead and alive. Complemen-
tary, Leggett [19,20] argued that, in large systems, there is a diffe-
rence between an accumulated quantum effect originated on a
microscopic scale and a “true” quantum effect on a macroscopic
scale. While the former is undoubtedly an experimental challenge
due to the complexity and the large number of degrees of freedom,
only the latter is supposed to provide insight into the aforementioned
problems. Based on these and other contributions [21], many physi-
cists came up with measures to quantify how “macroscopically
quantum” a state is [22–30]. Such mathematical definitions poten-
tially provide a clear view on macroscopic quantum effects. Further-
more, an established definition is the basis for theoretical conclusions
of, for example, the stability of macroscopic quantum states with
respect to noise [22,31] and measurement imperfections [32].

Due to the many proposals on the characterization of macroscopic
quantum states, it is clearly necessary to compare those measures in
order to understand the similarities and differences. First attempts
have been made in Ref. [28], where several measures suitable for spin
measures [22,23,25,26,28] have been classified. Another work [33]
applies some measures [21,25,26,28] to a specific multi-mode photon
state. The ultimate goal is to provide a general framework for
macroscopic quantum effects that covers all important physical
systems. With this, one is able to directly compare different systems.
For instance, one could then compare experiments on trapped
ions with massive objects in the superposition of spatial positions
(see additional remarks in Section 5).

In this paper, we aim to continue this research line by bridging
measures that were formulated for spin systems [22,23,25,26,28]
and for single photonic modes [27,30] (some of them are valid for
both systems). To this end, we use a simple model of a photon–
spin mapping, in particular, the absorption of a photonic state into
a spin ensemble. Under the assumption that the properties of the
photonic state are completely mapped to the spin ensemble, we
have a tool at hand to analyze and compare in which sense states
are macroscopically quantum according to different measures.

In the following, we draw some conclusions for several mea-
sures based on this mapping. As we will see later, it is necessary
that the mean photon number, N, of the considered state is much
smaller than the number of the spins in the ensemble, M. After the
mapping, N corresponds to the excitation level of the spins. In
this regime, we observe that some measures for spin states
behave differently than in the case where N is comparable with
M, which is the regime where they have been studied so far.
Apparently, through this work we also understand better the

present proposals and learn about the implications of their initial
intuition.

On the other side, we find that there are tight mathematical
connections between certain measures, even though the physical
motivation for introducing them is apparently very different. We
conclude therefore that, at least partially, there exists already
some consensus on the characterization of macroscopic quantum
states among the present proposals.

This paper is structured as follows. In Section 2, we set the basic
nomenclature and summarize the existing proposals in the field of
macroscopic quantum states. We also review some established
implications on the stability. In Section 3, we introduce and
elaborate on the model for the photon–spin interaction we use
to link different measures. Some implications are discussed in
Section 4. Conclusions and outlook are given in Section 5.

2. Review of measures for macroscopic quantum states

In this section, we first clarify some subtle but important points
for the discussion of macroscopic quantum physics (Section 2.1).
Then, in Sections 2.2 and 2.3, we give a rough overview on some
measures for macroscopic quantum states that have been pro-
posed so far. In Section 2.4, we discuss some implications on the
stability in the presence of noise and imperfections.

2.1. Preliminary discussion

Common goal of the measures: The common feature of all works
that are considered in this paper is to identify among all quantum
states those that are macroscopically quantum. This is done by
defining a function f ðψ ÞZ0 (some proposals are even defined for
mixed states). The larger the f ðψ Þ, the more the macroscopically
quantum jψ 〉 is. Often, f is called the effective size of jψ 〉. The
qualitative distinction between macroscopic and non-macroscopic
quantum states based on f is to some extent arbitrary.

System size: All published proposals agree that a quantum state
can only be macroscopically quantum if the respective system size is
in some sense “large”. For systems composed of microscopic
particles, it is necessary to have many constituents. If one considers
one (or few) bosonic modes, we require to have high excitation
numbers or high masses. The exact values for having a “large”
system are not crucial for the present discussion. As we are
concerned with spin and photonic systems in this paper, the system
size is defined as the number of spin-12 particles, M, or the mean
photon number, N, respectively.

Schrödinger-cat state vs. macroscopic quantum state: A first
distinction of the current literature can be made by the basic form
of the states considered to be macroscopic. Some authors
[23,25,26,30] consider superpositions of two (or a few) “classical”
states like

jψ 〉p jψ0〉þjψ1〉: ð1Þ

In a simplified way, one can say that one seeks a mathematical
definition for the verbal characterization that the states jψ0〉 and
jψ1〉 are “macroscopically distinct” [19]. In the remainder of this
paper, we call macroscopic superpositions of the form (1) a
Schrödinger-cat state.

On the other side, some proposals [22,24,27–29] do not require
a specific form of the quantum state and may even allow for mixed
states. States that are macroscopically quantum due to these
definitions are here called macroscopic quantum states (see exam-
ples below). If any confusion is excluded, we also use this term as
an umbrella term that includes the concept of a Schrödinger-
cat state.
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