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a b s t r a c t

The generation of non-classical states of large quantum systems has attracted much interest from a
foundational perspective, but also because of the significant potential of such states in emerging
quantum technologies. In this paper we consider the possibility of generating non-classical states of a
system of spins by interaction with an ancillary system, starting from an easily prepared initial state. We
extend previous results for an ancillary system comprising a single spin to bigger ancillary systems and
the interaction strength is enhanced by a factor of the number of ancillary spins. Depending on initial
conditions, we find – by a combination of approximation and numerics – that the system of spins can
evolve to spin cat states, spin squeezed states or to multiple cat states. We also discuss some candidate
systems for implementation of the Hamiltonian necessary to generate these non-classical states.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The apparent conflict between the classical world of our
everyday experience and the underlying quantum reality has been
widely discussed since the beginnings of quantum physics. A
prominent line of research is the effort to create entanglement
between a macroscopic quantum system and a microscopic system
along the lines of the original Schrödinger cat thought experiment
[1,2]. The generation of macroscopic quantum states is also
interesting from a technological point of view. In optical systems,
for example, it is known that various macroscopic non-classical
states can be exploited to give a significant improvement in the
precision of phase estimation [3,4]. Along these lines, many proof-
of-principle experiments have been demonstrated with optical
systems [5]. However, hybrid quantum systems might be even-
tually needed to extract quantum advantages in practical quantum
technology because alternative physical set-ups could provide
different advantages.

Recently, continuous-variable (CV) superposed/entangled
states have shown their potential in various optical and photonic
experiments [6] and the use of CV entangled states can be robust
in practical quantum metrology [7–9]. Recently, “micro-macro”
entangled states have been implemented from a path-entangled
single photon state [10,11]. The beam splitting interaction, by
putting a vacuum in one mode and a single photon Fock state in

the other, followed by a displacement in one of the modes leads to
the micro-macro entangled state DBðαÞðj1〉Aj0〉Bþj0〉Aj1〉BÞ=

ffiffiffi
2

p

where DBðαÞ is a displacement operator with amplitude α in mode
B [11].

Here, we consider the generation of non-classical states of two
interacting systems A and B where system A is a collection of NA

spin-1/2 particles and ancillary system B is a collection of NB spins.
Spin states have previously been considered as a way of storing a
qubit (i.e., two orthogonal collective spin states are used as
computational basis states of an effective qubit [12–15]) but can
be naturally utilised for CV quantum information processing by
creating CV entangled states in a spin system. We assume that the
initial state consists of each of the NA qubits in the same pure state,
an easily prepared state in principle. In [16,17] it was shown that
various CV states (e.g., spin cat states, multiple cat states, and spin
squeezed states) can be generated from a spin coherent state (SCS)
for NB¼1. By a combination of approximation and numerics, we
investigate cases when NB41. An advantage of NB41 compared
to NB¼1 is faster preparation times of the non-classical CV states.

This paper is organised as follows. In Section 2, we give the
interaction Hamiltonian and show that it has several well-known
Hamiltonians as limits. In Section 3 we present short-time
approximations for the dynamics of the model for two different
initial states of spin system A. In the first case, we show that for a
carefully chosen initial state of the ancillary system B, the system A
evolves to a superposition of two spin coherent states, a spin
“Schrodinger cat” state. In the second approximation we show that
spin system A evolves to spin squeezed states. We also give
numerical evidence that at later times, beyond the restriction of
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the approximation, the combined system AB can evolve to a
superposition of many spin coherent states (“multiple cat states”)
of the combined system. We suggest an ansatz Hamiltonian that
predicts the gross features of the dynamics in this case.

In Section 4, we discuss a beam-splitter (BS) type interaction
between two distinct systems of spins. If a non-classical SCS
interacts with a typical SCS, the resultant state can be understood
as an entangled CV SCS in two modes. This has potential to be
implemented in Bose–Einstein condensates (BECs) and Nitrogen-
vacancy centres (NV-centres) with superconducting systems.
Finally, we summarise the results in Section 5.

2. Spin Hamiltonian model

Let us assume that system A is a collection of NA spins and
system B is that of NB spins. We consider a Hamiltonian of the form

ĤðNA;NBÞ ¼ωA Ĵ
z
Aþ

NA

2

� �
þωB Ĵ

z
Bþ

NB

2

� �
þλðĴ þA Ĵ

�
B þ Ĵ

�
A Ĵ

þ
B Þ; ð1Þ

where the J-operators on system A are defined as

Ĵ
μ
A ¼

1
2

∑
NA

i ¼ 0
σ̂ μ
ðiÞ; Ĵ

7

A ¼ ∑
NA

i ¼ 0
σ̂ 7

ðiÞ ; Ĵ
2
A ¼∑

μ
ðĴμAÞ2; ð2Þ

where σ̂ μ are the Pauli operators for the individual spins of A with
μAfx; y; zg. The J-operators for B are defined in the same way.

The Dicke states are the set of simultaneous eigenstates of the
commuting operators Ĵ

2
A and Ĵ

z
A, and are denoted by jj;n� j〉A where

Ĵ
2
Ajj;n� j〉A ¼ jðjþ1Þjj;n� j〉A; Ĵ

z
Ajj;n� j〉A ¼ ðn� jÞjj;n� j〉A ð3Þ

for jAf0;1;…;NA=2g if NA is even, jA 1
2;

3
2;…;NA=2

� �
if NA is odd,

and nAf0;1;…;2jg. States in the j¼NA=2 eigenspace of the NA spin
system are totally symmetric with respect to exchange of any two
spins. In particular, the j¼NA=2 Dicke states are totally symmetric:

NA

2
;n�NA

2

����
�

A
¼ NA

n

� ��1=2

∑
permutations

↓�ðNA �nÞ↑�n〉;
�� ð4Þ

where j↑〉 and j↓〉 are eigenstates of σz for a single spin. The NAþ1
Dicke states ðnAf0;1;…;NAgÞ are a basis for the j¼NA=2 eigen-
space (this is true only for this eigenspace, the one associated with
the maximal value of j). In what follows we restrict to the j¼NA=2
eigenspace and the Dicke state in Eq. (4) is written as
jNA=2;n�NA=2〉A � jn〉A for simplicity.

The Ĵ
7

A operators have the effect of raising and lowering the n
index of Dicke states:

Ĵ
þ
A jn〉A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ1ÞðNA�nÞ

p
jnþ1〉A; ð5Þ

Ĵ
�
A jn〉A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðNA�nþ1Þ

p
jn�1〉A: ð6Þ

These raising and lowering operators have a superficial simi-
larity to the creation and annihilation operators of a bosonic field
mode,

â† jn〉¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ1

p
jnþ1〉; âjn〉¼ ffiffiffi

n
p jn�1〉; ð7Þ

where jn〉 are Fock states, eigenstates of â†â (the bar above n
indicates a state of the field mode rather than a state of the finite
spin system). In fact, it is not difficult to see that if we identify the
Dicke state limNA-1jn〉A with the Fock state jn〉 of a bosonic mode,
then

lim
NA-1

Ĵ
þ
Affiffiffiffiffiffi
NA

p ¼ â†
; lim

NA-1
Ĵ
�
Affiffiffiffiffiffi
NA

p ¼ â; ð8Þ

and Ĵ
7

A =
ffiffiffiffiffiffi
NA

p
obey the bosonic commutation relations:

lim
NA-1

Ĵ
�
Affiffiffiffiffiffi
NA

p ;
Ĵ
þ
Affiffiffiffiffiffi
NA

p
" #

¼ 1: ð9Þ

This is the bosonic limit of the spin raising and lowering operators.
If NA is finite then we have

Ĵ
�
Affiffiffiffiffiffi
NA

p ;
Ĵ
þ
Affiffiffiffiffiffi
NA

p
" #

¼ 1� 2
NA

Ĵ
z
Aþ

NA

2

� �
; ð10Þ

and the spin raising and lowering operators approximately satisfy
the bosonic commutation relations only if the second term on the
right-hand side of Eq. (10) can be neglected. For NA finite we also
have the Holstein–Primikoff transformations [18] that relate the J-
operators to the bosonic operators:

Ĵ
�
Affiffiffiffiffiffi
NA

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� â† â

NA

s
â;

Ĵ
þ
Affiffiffiffiffiffi
NA

p ¼ â†

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� â† â

NA

s
; Ĵ

z
A ¼ â† â�NA

2
: ð11Þ

As in Eq. (10), if the â†â=NA contributions under the square roots in
Eq. (11) can be neglected, the NA spin system (in the j¼NA=2
subspace) is well approximated as a bosonic mode.

The model Hamiltonian (1) has a number of other interesting
models as special limits. To see this it is first useful to renormalise
the interaction parameter to λ¼ ~λ=

ffiffiffiffiffiffiffiffiffiffiffiffi
NANB

p
so that we get sensible

results after taking limits. Then, for example, if we take the NA-1
limit and choose NB¼1 we are left with the familiar Jaynes–
Cummings Hamiltonian for the interaction of a bosonic mode with
a two level system:

Ĥð1;1Þ ¼ωAâ
†
AâAþ

ωB

2
ðσ̂ z

Bþ1Þþ ~λðâAσ̂
þ
B þ â†

Aσ̂
�
B Þ: ð12Þ

If we let NA-1 and allow NB to be some finite number we have
the Tavis–Cummings Hamiltonian:

Ĥð1;NBÞ ¼ωAâ
†
AâAþωB Ĵ

z
Bþ

NB

2

� �
þ

~λffiffiffiffiffiffi
NB

p ðâAĴ
þ
B þ â†

AĴ
�
B Þ: ð13Þ

If we take both NA-1 and NB-1 we get

Ĥð1;1Þ¼ωAâ
†
AâAþωBb̂

†
b̂Bþ ~λðâAb̂

†

Bþ â†
Ab̂BÞ; ð14Þ

the Hamiltonian for an exchange interaction between two bosonic
modes.

Each of these interaction Hamiltonians can be used – in
principle – to generate macroscopic superposition states of, say,
system A, and/or macroscopic entangled states of AB, starting from
easily prepared initial states of A. The on-resonance Jaynes–
Cummings model, for instance, with an initial mesoscopic coher-
ent state and an appropriately chosen initial qubit state, evolves to
a Schrödinger cat state of the field mode at a quarter of the revival
time (via an entangled state of the field and the atom) [19]. The
on-resonance Tavis–Cummings Hamiltonian can be applied to
generate the same Schrödinger cat state with a shorter evolution
time, but with the cost that the NB qubits must be initially in a
GHZ-type state [20].

Transforming the Hamiltonian (1) to the interaction picture
with respect to the free Hamiltonian Ĥ0 ¼ωBðĴ

z
Aþ Ĵ

z
BþðNAþNBÞ=2Þ

gives the interaction picture Hamiltonian

Ĥ IðNA;NBÞ ¼Δ Ĵ
z
Aþ

NA

2

� �
þλðĴ þA Ĵ

�
B þ Ĵ

�
A Ĵ

þ
B Þ; ð15Þ

where Δ¼ωA�ωB is the detuning. On resonance (ωA ¼ωB) this
reduces to

Ĥ IðNA;NBÞ ¼ λðĴ þA Ĵ
�
B þ Ĵ

�
A Ĵ

þ
B Þ: ð16Þ

This interaction term allows for a collective, coherent excitation to
be exchanged between system A and system B.
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