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With the slow but constant progress in the coherent control of quantum systems, it is now possible to
create large quantum superpositions. There has therefore been an increased interest in quantifying any
claims of macroscopicity. We attempt here to motivate three criteria which we believe should enter in
the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of
the states, and the ease with which the branches making up the state can be distinguished.
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1. Introduction

More than eighty years after its inception, quantum mechanics
has become firmly established as a reliable model of the physical
world. Even counter intuitive notions such as Schrodinger's cat
and wave-particle duality have trickled into the layman's vocabu-
lary. Yet, to this day and even within the physics community,
the coherent superposition of macroscopic objects still seems to
intrigue more than that of microscopic ones. One obvious reason
for this is that, because of decoherence, large numbers of particles
are difficult to shepherd into coherent ensembles. However,
decoherence on its own does not account for the vagueness
surrounding the macroscopicity buzzword [1].

Several experiments, especially in solid state and atomic setups
at cryogenic regimes, have exhibited quantized or coherent beha-
vior of macroscopic scales [2-4]. In quantum optics, coherent state
superpositions, the so-called Schrodinger cat states of light, have
been generated and thoroughly studied for nearly a decade [5-8].
In view of these advances, the question of macroscopicity has
shifted to a quantitative one: What observables make up the “size”
of a quantum state? Several equally valid measures for this were
proposed over the years [9-19]. Our purpose here is to give a
bigger picture of the various prerequisites that macroscopicity
entails. Indeed, the word “macroscopicity” has a dual etymology
with “macro” meaning large, and “scope” alluding to an observer-
dependent perspective. If, in addition, we talk of the quantum
macroscopicity of a system, we also expect that it exhibits
quantum coherence. The criterion for quantum macroscopicity is
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thus three-fold: One should assert that a system is (1) large,
(2) quantum, and (3) demonstrably composed of macroscopically
distinct branches in at least some of its subsystems.

The outline of this paper is as follows. We begin by treating
points (1) and (2) above in Section 2, where we present a measure
for the size of pure states which consists of the number N of
fluctuation photons. Such a measure is objective in the sense that
it is independent of the measurement process. We also give a brief
reminder that the quantumness of a state is related to its purity
and that the inclusion of purity in the macroscopicity measure is
necessary, albeit non-trivial. Section 3 discusses the observer's
ability to distinguish mixed states. This is formalized with a
distinguishability factor D which is then combined with A to
produce what we shall refer to as the subjective—perceived—
macroscopicity M. By the same token, we emphasize that distin-
guishability is fundamentally ill-defined for the branches of a
coherent superposition.

2. Objective macroscopicity

Our heuristic approach to macroscopicity begins with the
phase space representation of physical states. Consider a classical
state tracing a trajectory in phase space under some potential. It is
represented by a geometrical point whose distance from the origin
reflects how excited it is. In quantum mechanics, this point
acquires a continuous pseudo-probability distribution—typically
a Gaussian of finite width—of which it becomes the centroid.
The canonical coordinates of the centroid are the same as in
the classical picture [20]; the first moment of the distribution is
therefore unlikely to describe quantum properties. The second
moment, on the other hand, arises from a coherent set of quantum
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fluctuations. It is these fluctuations, which amount to the quantum
noise of the distribution, that are of interest. This means that, in
effect, a coherent state of light is as macroscopic as the vacuum
since the two only differ by their centroid's position. Even if the
coherent state contains a larger number of photons, the effective
number of them that contributes to quantum fluctuations is the
same as that of the vacuum, namely zero. All the other photons
can be considered as nothing more than a classical offset with no
coherence content.

From the motivation outlined above, we therefore propound
that the macroscopicity of a quantum optical state is quantified
by the mean number of photons minimized over all possible
displacement operations [29]. In other words, we define the
macroscopicity as the number of photons associated with the
fluctuations within a pure state |y):

N('U/)) = <flﬂuct.>\v/)

= <ﬁ> - <ﬁcentroid>
= % (var(x)+var(p)—1), (1)

with A =3&*+p* 1) and (Acenroia) = (@X@") =1 (R)?+(p)?). The
measure A is objective in the sense that it is expressed in physical
units of fluctuation photons with no dependence on the measure-
ment process. Further below, we shall also present a subjective—
observer-dependent—version of it.

It is worth mentioning that, for pure states, the macroscopicity
N coincides with that of Lee and Jeong [12], who arrived at their
own measure from an entirely different motivation and which in
turn matched some earlier results by Diir et al. [11]. We take this
convergence of results as a strong indication that our heuristic
described above is valid.

A warning is in order at this point regarding a critical caveat:
the distributions of which we compute the second moment should
be made up exclusively of coherent excitations. In other words, the
derivation leading up to (1) only reveals genuine quantum fluctua-
tion photons provided the state under consideration has unit
purity. Failing this, we lose track of whether the variance in the
canonical coordinates is of quantum or classical origin since both
distributions are blended indiscriminately into one and the same
Wigner function. This is illustrated with the example of coherent
state superpositions and mixtures in Fig. 1. The generalization of
(1) which discerns the quantum second-moments from the
classical ones is a non-trivial matter which we shall not attempt
to tackle here. For the sake of simplicity, we shall therefore limit
our discussion to pure states. (For a treatment of mixed states, we

0.15

0.05

4]
-0.05
-0.1

-0.15
-0.2
-0.25
-0.3

refer to the work of Lee and Jeong [12], who provide a general and
intuitive strategy.)

3. Subjective macroscopicity

We have so far presented the quantum size of an optical system
as an objective measure that is observer independent. However, in
the quantum optics community, the notion of macroscopicity is
often associated with the subjective ability of an observer to
distinguish the branches with a coarse-grained detector [13-15].
Using a “classical” detector such as the naked eye or a coarse
grained intensity detector one should be able to infer any one of
the branches of the quantum state. The underpinning idea is that
coarse-graining, for being insensitive to microscopic observables,
can only discern macroscopically separated eigenvalues.

It is therefore useful to define a subjective macroscopicity
measure that involves the ability to distinguish pre-specified
branches of a macroscopic quantum state. This contains not only
information about how large a state is (the objective macroscopi-
city) but also information about how far apart its branches are
from one another from the perspective of the observer.
This follows the original spirit of Schrodinger's thought experiment.

3.1. The notion of distinguishability

We shall first elaborate on the notion of distinguishability in
order to later incorporate it in a subjective measure of macro-
scopicity. The two concepts are often interlinked in the literature,
as exemplified by the work of Korsbakken et al. in [13]. A related
strategy was followed by Sekatski et al. [14,15] who define
macroscopicity by the ability to discriminate the branches using
a classical-like intensity detector which cannot resolve photon
numbers. Such a discrimination task of macroscopically distinct
branches by using ideal homodyne detectors was considered in
Ref. [21]. Strongly motivated by these works (in particular by the
work of Sekatski et al.), we shall consider in this section the notion
of distinguishability using a noisy detector and present various
relevant examples.

Recall Schrédinger's original thought experiment: A macro-
scopic cat, which is entangled with an atomic qubit {|t),]])}, is
collapsed upon observation into either one of the two orthogonal
states |peap) or |ALive). For this simple two-level, two-mode
system, the notion of distinguishability is essentially a measure
of our confidence in being able to identify in a single-shot that the
cat is either dead or alive. We shall express this confidence level as
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Fig. 1. Wigner profiles of a coherent state superposition |@)—|—a) (left) and a coherent state mixture |a)(a|+|—a)—a| (right) for @ =1.5. The x- and p-variances are
represented schematically by the orthogonal double arrows. The crucial difference between the superposition and the mixture is that the coherent variance—the one that
arises from quantum fluctuations, not classical statistics—is much smaller for the mixtures. Whereas it spans both lobes of the Wigner function for the superposition, its
extent in the mixture is merely that of either coherent state | + ). This “genuine quantum” variance is represented by the yellow arrows and that is the one that should enter
in the macroscopicity. Since both quantum and classical statistics get blended together in the Wigner function, a blind application of Eq. (1) will yield the wrong result for
mixed states as it will mistake the overall variance (dotted gray) for a quantum variance. (For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this paper.)
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