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a b s t r a c t

Previously a new scheme of quantum information processing based on spin coherent states of two
component Bose–Einstein condensates was proposed (Byrnes et al. Phys. Rev. A 85, 40306(R)). In this
paper we give a more detailed exposition of the scheme, expanding on several aspects that were not
discussed in full previously. The basic concept of the scheme is that spin coherent states are used instead
of qubits to encode qubit information, and manipulated using collective spin operators. The scheme goes
beyond the continuous variable regime such that the full space of the Bloch sphere is used. We construct
a general framework for quantum algorithms to be executed using multiple spin coherent states, which
are individually controlled. We illustrate the scheme by applications to quantum information protocols,
and discuss possible experimental implementations. Decoherence effects are analyzed under both
general conditions and for the experimental implementation proposed.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Bose–Einstein condensation was first achieved in 1995 for
ultracold atoms [1,2], as well as a variety of different physical
systems, ranging from exciton-polaritons [4], magnons [5],
photons [6], and superfluid Helium [7]. For atomic Bose–Einstein
condensates (BECs), atom chip technology has made possible the
miniaturization of traps on the micrometer scale, allowing for the
possibility of the individual formation and control of many BECs
[8]. Due to the long coherence times of cold atoms, a natural
application for such systems is quantum information processing,
ranging from such tasks as quantum metrology [3], quantum
simulation [9], and quantum computing.

Recently, two component BECs were realized on atom chips
realizing full control on the Bloch sphere and spin squeezing
[11,10,12]. The primary application for such two component BECs
is currently thought to be for quantum metrology and chip based

clocks. Here we discuss its applications towards quantum compu-
tation. In particular we review a new approach to quantum
information processing based on spin coherent states of two
component BECs, originally proposed in Ref. [14]. While BECs have
been considered for quantum computation in the past in works
such as Ref. [13], the results have shown to be generally unfavor-
able for these purposes due to enhanced decoherence effects due
to the large number of bosons N in the BEC. The basic idea of the
scheme in Ref. [14] is to take advantage of the analogous state
structure of spin coherent states on the Bloch sphere as qubits. The
state of a qubit at a particular location on the Bloch sphere is
encoded as a spin coherent state with the same parameters on the
Bloch sphere. Manipulations of the state then proceed by applying
collective spin operators Sx;y;z and the entangling operations SzSz .
Using this particular encoding of the quantum information, largely
mitigates the problem of decoherence as found in Ref. [13]. We
develop the framework for quantum computation using this
encoding, illustrated with several quantum algorithms. We also
analyze the effects of decoherence from several standpoints
and discuss the scheme's performance under a variety of
conditions.
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2. Encoding a single qubit on a spin coherent state

To encode a qubit, we will consider BECs with ground state
degrees of freedom, such as two hyperfine levels in an atomic BEC
[3]. We assume that temperatures are sufficiently low such that
the spatial degrees of freedom are frozen out. Denote the bosonic
annihilation operators of the two ground states as a and b. These
obey standard bosonic commutation relations ½a; a†� ¼ ½b; b†� ¼ 1
[15]. We then propose that a standard qubit state αj0〉þβj1〉 is now
encoded on the BEC in the spin coherent state such that

jα;β〉〉� 1ffiffiffiffiffi
N!

p ðαa†þβb†ÞN 0〉;j ð1Þ

where α and β are arbitrary complex numbers satisfying jαj2þ
jβj2 ¼ 1. Double brackets are used to denote spin coherent states,
emphasizing the fact that these are macroscopic states involving
many particles. We call the state (1) a “BEC qubit” due to the
analogous properties of this state with a standard qubit. For
simplicity we consider the boson number N¼ a†aþb†b to be a
conserved number, which amounts to a zero temperature approx-
imation. Assuming N particles that can be in either level a or b,
the Hilbert space has a dimension of Nþ1. Fock states can be
written as

jk〉� ða†Þkðb†ÞN�kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k!ðN�kÞ!

p 0〉;j ð2Þ

which are orthonormal 〈kjk0〉¼ δkk0 with kA ½0;N�.
The spin coherent state (1) can be visualized by a point on

the Bloch sphere with an angular representation α¼ cos ðθ=2Þ;
β¼ sin ðθ=2Þeiϕ. The spin coherent states form a set of pseudo-
orthogonal states for large N. The overlap between two states can
be calculated to be

〈〈α0;β0jα;β〉〉¼ e� iðϕ�ϕ0 ÞN=2 cos
θ�θ0

2
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� ��N
: ð3Þ

For example, for ϕ¼ϕ0 the overlap simplifies to

〈〈α0;β0jα;β〉〉¼ cos N θ�θ0

2
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� exp �Nðθ�θ0Þ2

8

 !
: ð4Þ

Thus beyond angle differences of the order of θ�θ0 � 1=
ffiffiffiffi
N

p
, the

overlap is exponentially suppressed.
The state (1) can be manipulated using total spin (Schwinger

boson) operators

Sx ¼ a†bþb†a;

Sy ¼ � ia†bþ ib†a;

Sz ¼ a†a�b†b; ð5Þ
which satisfy the usual spin commutation relations ½Si; Sj� ¼
2iϵijkS

k, where ϵijk is the Levi-Civita antisymmetric tensor. In the
spin language, (1) forms a spin-N/2 representation of the
SU(2) group (we omit the factor of 1/2 in our spin definition for
convenience). For the special case of N¼ 1, the spin operators
reduce to Pauli operators

σx ¼ j1〉〈0jþj0〉〈1j;
σy ¼ � ij1〉〈0jþ ij0〉〈1j;
σz ¼ j1〉〈1j�j0〉〈0j: ð6Þ
When referring to standard qubits, we will use the σx;y;z notation
throughout this paper to differentiate this to the BEC case where
we will use Sx;y;z .

Single BEC qubit rotations can be performed in a completely
analogous fashion to regular qubits. For example, rotations around

the z-axis of the Bloch sphere can be performed by an evolution

e� iΩSzt jα;β〉〉¼ 1ffiffiffiffiffi
N!

p ∑
N

k ¼ 0

N

k

� �
ðαa†e� iΩtÞkðβb†eiΩtÞN�k 0〉j

¼ jαe� iΩt ;βeiΩt〉〉: ð7Þ
Similar rotations may be performed around any axis by an
application of

H1 ¼ ℏΩn � S ¼ ℏΩðnxS
xþnyS

yþnzS
zÞ ð8Þ

where n¼ ðnx;ny;nzÞ is a unit vector. Expectation values of the
total spin are identical to that of a single spin (up to a factor of N),
taking values

〈Sx〉¼NðαnβþαβnÞ
〈Sy〉¼Nð� iαnβþ iαβnÞ
〈Sz〉¼Nðjαj2�jβj2Þ; ð9Þ
where 〈Sx;y;z〉� 〈〈α;βjSx;y;zjα;β〉〉. These may be derived efficiently
by using the relations

½Sx;αa†þβb† � ¼ αb†þβa†

½Sy;αa†þβb† � ¼ � iαb†þ iβa†

½Sz;αa†þβb† � ¼ αa†�βb† ð10Þ
and

½αnaþβnb;αa†þβb† � ¼ 1: ð11Þ
In contrast to the average spin, when normalized according to

Sx;y;z=N has the same result as for standard qubits, variance
diminishes under the same normalization:

〈ðSzÞ2〉� 〈Sz〉2

N2 ¼ 4jαβj2
N

: ð12Þ

This is in accordance with the widespread notion that for N-1
the spins approach “classical” variables. We shall however see in
the following section that despite the classical appearance of such
a state, such a many boson state can exhibit quantum properties
such as entanglement.

We note that collective state encodings have been proposed
previously in works such as Refs. [16–18], where a large number of
particles is used to encode a two level system. A key difference
between the encoding in these works and (1) is that the full Nþ1
Hilbert space is used here to encode the two level system.
Typically in these works first the spins are polarized in a particular
direction and low lying excitations are used to encode quantum
information. In contrast, for various parameters α;β the state (1)
uses the full Hilbert space of the spins. Thus although many
physical particles encode the quantum state, the Hilbert space
mapping is one-to-one.

3. Entanglement between BECs

Two BEC qubit gates can be formed by any product of the
Schwinger boson operators of the form

H2 ¼ ∑
M

n;m ¼ 1
∑

i;j ¼ x;y;z
ℏΩijS

i
nS

j
m ð13Þ

where Ωij are real symmetric parameters. Our first aim will be to
show that such an operator, combined with H1 allows for a set of
operations with the corresponding operations to standard qubit
operations. To make this definition more precise, let us consider
the most general Hamiltonian for standard qubits:

H¼∑
j
AðjÞ ∏

M

n ¼ 1
σjðnÞ
n ð14Þ

T. Byrnes et al. / Optics Communications ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: T. Byrnes, et al., Optics Communications (2014), http://dx.doi.org/10.1016/j.optcom.2014.08.017i

http://dx.doi.org/10.1016/j.optcom.2014.08.017
http://dx.doi.org/10.1016/j.optcom.2014.08.017
http://dx.doi.org/10.1016/j.optcom.2014.08.017


Download English Version:

https://daneshyari.com/en/article/7930252

Download Persian Version:

https://daneshyari.com/article/7930252

Daneshyari.com

https://daneshyari.com/en/article/7930252
https://daneshyari.com/article/7930252
https://daneshyari.com

