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a b s t r a c t

We report on the quantitative hard x-ray phase microscopy obtained with a laboratory source equipped
with an x-ray planar waveguide. The waveguide, acting as a small secondary source with increased
coherence, allows for phase contrast microscopy to be measured from a phase-only one-dimensional
object. We analyzed different strategies and their performances for the case studied of low absorbing
one-dimensional sample. It was found that the phase-only approximation for the sample enables the
best performance in phase retrieval. Results obtained from experimental data are supported by phase
retrieval performed on simulated data allowing an estimation of the performance of the algorithms. The
ability to perform quantitative phase contrast microscopy with waveguides is an important advance for
this novel x-ray phase contrast method, well suited to compact laboratory setups.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Phase contrast (PC) x-ray imaging is a useful analytic tool
which provides unique information on the internal structure,
interfaces and thickness of samples that have very low absorption
[1,2]. Unlike absorption imaging, phase contrast aims at measuring
phase changes that occur due to differences in a samples thickness
or optical density. For biological samples, the variation from unity
of the real part of the refractive index is much greater than the
variation in absorbance (related to the imaginary part of the
complex refractive index) when hard x-rays are used. Thus as
the real part of the refractive index alters only phase, very high
contrast can be attained by developing phase sensitive imaging
techniques.

While there are numerous different methods for undertaking
PC imaging [1,2], propagation-based PC imaging [3] is the easiest
to implement experimentally. It requires no optics and the
recorded image features edge enhancement due to PC effects
arising when the wave front interferes upon crossing an interface
between two materials. The edge enhancement appears when the
detector is placed further downstream from the sample to allow
enough distance for cumulative interference effects to be easily
detectable. The main requirement of propagation-based PC ima-
ging is a sufficient degree of coherence of the illuminating field
[4,5] which can be obtained with a synchrotron source or with a

microfocus x-ray source. Depending on the attainable spatial
resolution, the latter method, based on the geometrical magnifica-
tion of the sample image onto the detector plane, is termed
projection microscopy. Reducing the dimension of the x-ray source
(or its divergence) is the key to obtain a sufficient degree of
coherence [6]. Recently, an experimental setup, able to produce a
sub-micrometer x-ray beam for projection microscopy with
laboratory sources, was demonstrated using x-ray waveguides in
1D [7] and 2D [8]. The principle of operation of an x-ray
waveguide (WG) is total internal reflection occurring at the inter-
face between a layer and a surrounding medium with lower
refractive index. For x-ray operations, being the refractive index
of all material less than unity, a WG can be obtained by an empty
channel surrounded by reflecting surfaces [9,10]. The guiding
channel can be made of micron or sub-micron width and there-
fore, when a WG is coupled to a standard x-ray source, it filters the
incoming radiation, effectively acting as a small secondary source.
Moreover the multiple interference occurring when x-rays propa-
gates along the channel (resonator), contribute to improve the
degree of coherence of the incoming radiation by reducing the
number of modes sustained by the resonator [11,12].

High resolution projection microscopy in 1D [7] and 2D [8] has
been demonstrated coupling x-ray WGs to laboratory tubes. How-
ever, quantitative phase retrieval using this configuration has not yet
been achieved. This is specifically the topic of this paper.

Whilst propagation-based PC x-ray imaging provides detailed
information on the sample, it does not directly reveal the phase
shift induced by it on the incoming wave front which can be the
quantity of interest. Phase retrieval techniques must be used to
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extract the phase information from the data [13,14]. A variety of
approaches can be used, the choice of the best algorithm depend-
ing on the sample characteristics and the imaging geometry [15–
18]. In this paper we investigate different strategies for phase
retrieval that can be used to retrieve the projected thickness of a
homogeneous mono-material object. The performances of the
different approaches are compared for the configuration under
study, i.e. the one-dimensional projection microscopy using a
planar WG as secondary source. We find that approximating the
sample by a phase-only object enables better phase retrieval
results for experimental data. This finding is supported by subse-
quently performing phase retrieval on simulated data with differ-
ent values of the refractive index. This information will be valuable
to future PC imaging experiments using WGs or other microfocus
x-ray sources in which the accurate phase retrieval may be the
desired outcome.

The paper is organized as follows: in Section 2 we shall
introduce the theoretical background, reviewing the algorithms
used for the phase retrieval. In Section 3 the experimental setup
and the PC data are presented. Section 4 is devoted to describing
the phase retrieval of the experimental data, followed by the
phase retrieval of simulated data to support and critically analyze
the results. Conclusions are drawn in Section 5.

2. Theoretical background

In many imaging problems, x-ray free-space propagation is con-
veniently described with the Transport of Intensity Equation (TIE) [19],
obtained from the Helmholtz equation using the paraxial approxima-
tion. In this paper we are dealing with a two-dimensional (2D)
propagation problem, as described in the schematic drawing of
Fig. 1. The propagation distance is denoted by z and the transverse
direction (the direction in which the PC is measured) is denoted by x.
The 2D TIE has the form:

�k∂zI0ðxÞ ¼ ∂x½I0ðxÞ∂xϕ0ðxÞ�: ð1Þ
In Eq. (1) ∂x ¼ ∂=∂x and similarly for ∂z, k¼ 2π=λ is the wave number
and λ is the wavelength. I0ðxÞ ¼ jUðx; z¼ 0Þj2 is the intensity mea-
sured along the transverse direction x and ϕ0ðxÞ the corresponding
phase associated with the unpropagated complex field Uðx; z¼ 0Þ.
By approximating

∂zI0ðxÞ �
IRðxÞ� I0ðxÞ

R
; ð2Þ

R being the sample-detector distance, Eq. (1) assumes the convenient
form:

IRðxÞ � I0ðxÞ�
R
k
∂x½I0ðxÞ∂xϕ0ðxÞ�: ð3Þ

An important solution of Eq. (3) has been obtained by Paganin et al.
[20] in the approximations of homogeneous, mono-material thin
sample. In this case the unpropagated intensity is expressed by a
simple Beer–Lambert law of absorption: I0ðxÞ ¼ IinðxÞexpð�μTðxÞÞ,
where Iin(x) is the incidence intensity (before the sample) and
μ¼ 4πβ=λ is the linear absorption coefficient, connected to the
imaginary part of the complex refractive index n¼ 1�δþ iβ. T(x) is
the sample complex transmission function. Such an assumption leads
to the following expression for the transmission function (see [20] for
the derivation of this result):

TðxÞ ¼ �1
μ
ln F �1 μ

F IRðxÞ=IinðxÞ
� �
Rδk2x þμ

" # !
: ð4Þ

In Eq. (4), the symbolF denotes the Fourier transform, F �1 its inverse
and kx the Fourier coordinate corresponding to x.

A further simplification can be made when the sample can be
approximated as a homogeneous phase-only object with β¼ μ¼ 0
and I0ðxÞ ¼ IinðxÞ. In this case a simpler version of the TIE equation
is found [21]:

∂2xϕ0ðxÞ �
R
k

1� IRðxÞ
IinðxÞ

� �
: ð5Þ

For a homogeneous phase-only sample ϕ0ðxÞ ¼ �kδTðxÞ, therefore
the transmission function of the sample can be derived at once
from the measured intensity via

TðxÞ ¼ �F �1 F ½IRðxÞ=IinðxÞ�1�
Rδk2x

" #
: ð6Þ

It is worth noting that this procedure is sometimes referred to as
“Bronnikov algorithm”, after Bronnikov [22], who combined the
use of Eq. (6) in a single step with tomographic back-projection.

In many practical uses of Eq. (6), a phenomenological regular-
ization parameter α is introduced at the denominator, to avoid the
singularity at kx ¼ 0, as proposed by Groso et al. [23]:

TðxÞ ¼ �F �1 F ½IRðxÞ=IinðxÞ�1�
Rδk2x þα

" #
: ð7Þ

Such a regularization parameter is not needed in the retrieval
procedure in Eq. (4) as the linear absorption coefficient itself
serves this function.

An alternative method to the introduction of a regularization
parameter is to use Eq. (6) and subsequently impose the value of
the function within the square bracket in kx ¼ 0 to be equal to the
value of the Fourier transform of the function obtained by direct
integration of the differential phase image for kx ¼ 0 (see [24]
where this procedure was applied in the case of the first derivative
of the phase).

The latter approach is found to produce the best result in our
case of 1D phase retrieval. In fact while computationally less
demanding, the 1D case is actually more delicate to deal with
numerically, as the numerical problem is far less constrained than
a conventional 2D phase retrieval.

Finally, we remark that the derivations outlined above are valid
for parallel beam illumination, i.e., a point source located infinitely
far downstream of the sample and a distance R between sample
and detector (Fig. 1 (a)). To account for projection microscopy –

cylindrical wave illumination in the 1D problem – with finite
source-sample distance R1 and sample-detector distance R2 (see
Fig. 1(b)), one can make use of the Fresnel scaling theorem [14,20]
which prescribes for the following substitutions to be made in Eqs.

Fig. 1. Schematic drawings of the 1D microscopy experiment. (a) Plan wave
illumination. (b) Cylindrical wave illumination with a WG used as a secondary
x-ray source.
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