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a b s t r a c t

This paper discusses the angular momentum to energy ratio for a class of nondiffractive vector beams.
Using the Humblet decomposition, we introduce closed form equations for the orbital, the spin, and the
surface angular momenta in both paraxial and nonparaxial regimes. The considered monochromatic
beams are exact solution to the Maxwell equations in free space and can be either transverse electric
(TE) or transverse magnetic (TM). In this context, we analytically show that the total angular momentum
is purely orbital. Additionally, we address both numerically and experimentally the generation of
nondiffractive vector beams. In the generation of the vector beams, we propose a general approach to
encode the corresponding scalar beams into the Kinoform, which possesses the upper bound diffraction
efficiency. Our approach is general in the sense that we can encode arbitrary nondiffractive TE and TM
vector beams. The experimental setup consists of two stages; a 4-f system and a common path
interferometer. To highlight the proposed approach, we experimentally generate high efficiency Bessel,
Mathieu, and Weber vector beams.

& 2014 Published by Elsevier B.V.

1. Introduction

Vector beams have attracted significant interest due to their
unique properties, e.g., the presence of a strong longitudinal
component of the electric field, tighter focusing properties, spin
momentum, and orbital angular momentum [1–3]. In particular,
vector beams that possess orbital angular momentum are useful in
many practical applications such as optical tweezers, imaging, and
wireless communications [3–5].

Homogenously polarized vector beams may carry orbital angu-
lar momentum and spin momentum. In the paraxial case, the spin
part depends on the polarization whereas the orbital part relies on
the magnitude and phase distributions. In addition, the orbital
angular momentum is polarization free [6–8]. Linearly and circu-
larly polarized Laguerre–Gauss beams possess well-defined angu-
lar momentum, which can be separated into the orbital and spin
parts [6]. Later, in [7], the authors found similar expressions for
elliptically polarized beams, where the considered beams have
azimuthal phase dependence like Laguerre–Gauss beams. The
numerical computation of the orbital angular momentum for
Mathieu beams was considered in [8]. Similarly, for Bessel beams,

the analytical computation of the orbital angular momentum is
derived in [4].

Further investigations for a general nonparaxial form of the
orbital angular momentum in homogenously polarized vector
beams are, for example, given in [4,7,9]. In [7], the authors
considered vector beams with azimuthal phase dependence like
Laguerre–Gauss beams. They found that no simple separation of
the total angular momentum into the orbital angular momentum
and spin momentum exists. However, the relationship for the total
angular momentum in the paraxial and nonparaxial regimes is the
same. In addition, the case of vector Bessel beams was considered
in [4]. The work [9] considers the computation of the orbital
angular momentum using a general equation for the vector beams,
that is, the angular plane wave spectrum of the nonparaxial beam.
That approach involves the use of Fourier series decomposition to
calculate the orbital angular momentum.

In nonhomogenously polarized vector beams, radially and
azimuthally polarized Bessel vector beams were considered in
[10]. This approach is based on the Hertz vector potential and
the resulting vector beams are solution of Maxwell's equations.
In addition, the author showed that the total angular momentum
equals zero. Similarly, in [11], the authors proposed an interesting
class of monochromatic transverse electric (TE) and transverse
magnetic (TM) nondiffractive vector beam modes, which are
exact solution of Maxwell's equations in free space. Using this
approach, Bessel, Mathieu, and Weber vector fields with different

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/optcom

Optics Communications

http://dx.doi.org/10.1016/j.optcom.2014.08.004
0030-4018/& 2014 Published by Elsevier B.V.

E-mail addresses: gmendez@inaoep.mx (G. Méndez),
afernan@ieee.org (A. Fernandez-Vazquez), ralphcerezo@inaoep.mx (R. Páez López).

Please cite this article as: G. Méndez, et al., Optics Communications (2014), http://dx.doi.org/10.1016/j.optcom.2014.08.004i

Optics Communications ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/00304018
www.elsevier.com/locate/optcom
http://dx.doi.org/10.1016/j.optcom.2014.08.004
http://dx.doi.org/10.1016/j.optcom.2014.08.004
http://dx.doi.org/10.1016/j.optcom.2014.08.004
mailto:gmendez@inaoep.mx
mailto:afernan@ieee.org
mailto:ralphcerezo@inaoep.mx
http://dx.doi.org/10.1016/j.optcom.2014.08.004
http://dx.doi.org/10.1016/j.optcom.2014.08.004
http://dx.doi.org/10.1016/j.optcom.2014.08.004
http://dx.doi.org/10.1016/j.optcom.2014.08.004


polarization states can be obtained. Radial and azimuthal polar-
izations are special cases [4,11]. Additionally, the authors provided
the energy density and the Pointing vector of these beams.
Unfortunately, closed form equations for the evaluation of the
orbital angular momentum and spin momentum exist for some
special cases, that is, low order Bessel beams [4,12,13].

In the aforementioned nonparaxial vector beams, the total
angular momentum accounts for the spin and orbital parts.
Recently, however, it was suggested that in order to preserve the
gauge invariance of the beam, we should include an extra term
called surface angular momentum [14]. In this fashion, the surface
part is not negligible in the nonparaxial regime for Laguerre–
Gaussian and Bessel beams [14].

On the other hand, in the context of digital holography, several
methods for generating vector beams have been proposed in the
literature [12,15–19]. One promising method is the use of spatial
light modulator (SLM) due to its versatility and flexibility [17–19].
In this setting, the SLM transforms the incoming beam into two
previously designed and homogenously orthogonally polarized
scalar beams, which are superimposed to generate the corre-
sponding vector beam. Hence, using amplitude computer gener-
ated holograms and an axicon, the generation of nondiffractive
first-order TE and TM Bessel vector beams in free space was
proposed [12]. In [17], it was suggested the generation of vector
beams using ferroelectric liquid crystal SLM, which diffracts the
two incoming orthogonal polarized beams with equal efficiency.
Unfortunately, the proposed SLM displays binary diffractive struc-
tures and the resulting beams have poor diffraction efficiency. In
[18], the authors proposed an interesting method to produce
arbitrary vector beams using amplitude SLM and a common path
interferometric arrangement. Although they generate stable and
good quality vector beams, the use of amplitude SLM results in
poor diffraction efficiency. To generate high quality vector beams
and high diffraction efficiency, a convenient way is the use of
phase holograms. Accordingly, the author in [19] showed that
phase holograms allow to control the superposition of scalar
beams of different orders and the resulting vector beams possess
high signal to noise ratio (SNR). However, the encoding method
used to generate the corresponding scalar beams results in low
diffraction efficiency which is not suitable for many applications
like particle manipulation [20].

The aim of this paper is two fold. First, we provide closed form
equations to compute the total angular momentum to energy ratio
for a class of nondiffractive TE and TM vector beams. Specifically,
we introduce closed form equations for the spin, the orbital, and
the surface parts of the angular momentum. Second, we experi-
mentally demonstrate the efficient generation of TE and TM vector
beams using phase holograms that possess the upper bound
diffraction efficiency. The phase holograms are designed such that
they transform the incident beam into the desired scalar beams.
Additionally, the proposed phase holograms are implemented in a
phase-only SLM, which is placed at the input of a 4-f system. The
generated scalar beams are orthogonally polarized and are super-
posed in a common path interferometric arrangement. To high-
light the proposed approach, we experimentally generate high
efficiency Bessel, Mathieu, and Weber vector beams.

2. Theory

This section reviews the theory of nondiffractive TE and TM
vector beams and introduces closed form equations for the total
angular momentum to energy ratio along the propagation axis. For
convenience, we use cylindrical coordinates and cartesian coordi-
nates if necessary.

At first, we define the TE and TM electric fields in which we are
interested. Following the ideas in [11] and assuming harmonic
time dependence of the form expð� iωtÞ, where ω is the angular
frequency of the beam, the class of monochromatic fields that are
exact solution to the Maxwell equations in free space is defined as

ETEðr;θ; zÞ ¼
ffiffiffi
2

p
½ψ þ ðr;θÞe� �ψ � ðr;θÞeþ �expðikzzÞ; ð1Þ

ETMðr;θ; zÞ ¼ kz
k

�
ffiffiffi
2

p
½ψ þ ðr;θÞe� þψ � ðr;θÞeþ �þ2

k2t
kz
ψ ðr;θÞez

( )
expðikzzÞ; ð2Þ

where ðr;θÞ are the cylindrical coordinates; kt and kz are, respec-
tively, the transverse and longitudinal components of the propa-
gation vector, and are related by the wave number k as

k2 ¼ k2t þk2z ; the set feþ ; e� ; ezg is the cylindrical circular polariza-
tion basis; and the nondiffractive scalar beams ψ 7 ðr;θÞ are given
by [11]

ψ 7 ðr;θÞ ¼ 1
i
expð7 iθÞ ∂

∂r
7 i

1
r
∂
∂θ

� �
ψ ðr;θÞ; ð3Þ

where ψ ðr;θÞ is an arbitrary nondiffractive scalar beam. As a
difference with the results given in [11], here we propose the
use of the Wittaker integral to express a more general form of the
nondiffractive scalar beam ψ ðr;θÞ [21], i.e.,

ψ ðr;θÞ ¼ 1
kt

Z π

�π
AðφÞexp½iktr cos ðφ�θÞ� dφ: ð4Þ

The expression for the beam ψ ðr;θÞ can be viewed as the inverse
Fourier transform in cylindrical coordinates of Ψ ðρ;φÞ ¼
ð2πÞ2AðφÞδðρ�ktÞ=ktρ, where δð�Þ is the Dirac delta, and AðφÞ is
the angular spectrum of the beam. The selection of AðφÞ depends
on the desired intensity distribution of ψ ðr;θÞ. The well known
Bessel, Mathieu, and Weber beams are obtained if AðφÞ ¼ expðinφÞ;
AðφÞ ¼ cemðφ; qÞþ isemðφ; qÞ, where cemðφ; qÞ and semðφ; qÞ are the
m-th order angular Mathieu functions with ellipticity parameter q;
and AðφÞ ¼ tan iμðφ=2ÞHð sin φÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sin φ

p
, where μ is a real valued

parameter, and Hð�Þ is the Heaviside function [22–25].
Substituting (4) into (3), the following relation holds:

ψ 7 ðr;θÞ ¼
Z π

�π
expð7 iφÞAðφÞexp½iktr cos ðφ�θÞ� dφ: ð5Þ

Expressing the orthonormal circular polarization basis e7 in
terms of the cylindrical basis, i.e., e7 ¼ ðer7 ieθÞexpð7 iθÞ=

ffiffiffi
2

p
,

Eqs. (1) and (2) become

ETEðr;θ; zÞ ¼ f½ψ þ ðr;θÞexpð� iθÞ�ψ � ðr;θÞ expðiθÞ�er
� i½ψ þ ðr;θÞexpð� iθÞþψ � ðr;θÞ expðiθÞ�eθg expðikzzÞ;

ð6Þ

ETMðr;θ; zÞ ¼ 1
k
ðkz i½ψ þ ðr;θÞexpð� iθÞ�ψ � ðr;θÞexpðiθÞ�eθ
�

�½ψ þ ðr;θÞexpð� iθÞþψ � ðr;θÞexpðiθÞ�erg
þ2k2t ψ ðr;θÞezÞ expðikzzÞ; ð7Þ

Similarly, using orthonormal cartesian basis, e7 ¼ ðex7 ieyÞ=
ffiffiffi
2

p
,

we have

ETEðr;θ; zÞ ¼ f½ψ þ ðr;θÞ�ψ � ðr;θÞ�ex� i½ψ þ ðr;θÞþψ � ðr;θÞ�eyg expðikzzÞ; ð8Þ

ETMðr;θ; zÞ ¼ 1
k
ðkz i½ψ þ ðr;θÞ�ψ � ðr;θÞ�ey�½ψ þ ðr;θÞþψ � ðr;θÞ�ex
� �

þ2k2t ψ ðr;θÞezÞ expðikzzÞ; ð9Þ
We now focus our attention to the total angular momentum

to energy ratio. So, we introduce closed form equations to
compute the orbital angular momentum, the spin momentum,
and surface angular momentum for the TE and TM modes. The
cycle-averaged angular momentum density of light is expressed as
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