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a b s t r a c t

In this paper, we present the investigation on the photonic localization and band gaps in quasi-periodic
photonic crystals containing graded index materials using a transfer matrix method in region
150–750 THz of the electromagnetic spectrum. The graded layers have a space dispersive refractive
index, which vary in a linear and exponential fashion as a function of the depth of layer. The considered
quasiperiodic structures are taken in the form of Thue–Morse and Double-Periodic sequences. The
grading profile in the layers affects the position of reflection dips and forbidden bands, and frequency
region of the bands. We observed that vast number of forbidden band gaps and dips are developed in its
reflection spectra by increasing the number of quasi-periodic generation. Moreover, we compare the
total forbidden bandwidths with increasing the generation of the quasi-periodic sequences for the
structures with linear and exponential graded layer. Results show that the different graded profiles with
same boundary refractive index can change the position of localization modes, number of photonic
bands and change the frequency region of the bands. Therefore, we can achieve suitable photonic band
gaps and modes by choosing the different gradation profiles of the refractive index and generation of the
quasi-periodic sequences.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the past two decades, great efforts have been dedicated towards
the investigation of the structure and physical properties of quasi-
periodic systems after the discovery of the quasi-crystalline structure
[1–3]. Quasi-periodic systems have long-range order but not in a
repeating fashion yielding periodicity. These arrangements are fixed in
a regular pattern and follow a simple deterministic recursion rule
[4,5]. Quasi-periodic systems are one of the most interesting arrange-
ments to obtain the suitable photonic band gaps because of several
structural parameters available to tune as compared to the periodic
and disordered systems [6–8]. Recently, some research groups have
reported their works on electromagnetic (EM) wave propagation in
quasi-periodic structures called photonic quasi-crystals. Due to a long-
range order, such type of structures provide wide photonic band gap
in photonic spectra as in periodic photonic crystals and simultaneously
possess localized states as in disorder media [9,10]. Photonic quasi-
crystals exhibit unique influence on the optical properties such as
optical transmission and reflectivity, photoluminescence, light trans-
port, plasmonics and laser action, etc. Li et al. [11] and Luo et al. [12]

proposed two-dimensional photonic crystals that achieve multimode
lasing action, low pumping threshold and excellent linear polarization
property as well as wide directional dependence. This opens a new
field of research in photonics in view of their vast technical applica-
tions. Photonic band gap properties of quasi-periodic multi-layered
structures have been extensively studied for different materials [13].
Specifically, one-dimensional (1-D) photonic quasi-crystals are very
important because their formation is relatively easy and they may
provide the description of light propagation in one direction [14–16].
One-dimensional photonic quasi-crystals are composed of layers
according to substitutional sequences in form of the Fibonacci,
Thue–Morse and Double-Periodic etc.

Recently several researchers have been proposed the 1-D
multilayer structures with gradual varying RI as a function of the
depth of layer, and width of layers varies as a gradual fashion along
the direction perpendicular to the surface of layer in the consid-
ered structures [17–21]. Such type of structures are called graded
photonic crystals (GPCs). In two-dimensional GPC structures,
gradual variations of the relative parameters can be distributed
along the normal or perpendicular to the propagation of electro-
magnetic waves. Gradual variation of relative parameters of GPCs
make them very different in the behaviour from the conventional
PCs and enhance the ability to mold and control of the light wave
propagation [22–24]. Such types of PCs play an important role to
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design spectral filters, beam aperture and deflector, high efficiency
bending waveguides, high efficiency couplers, super bending
and self-focusing media, lenses, artificial optical black holes and
antireflection coating [25–30]. In our previous work [31], we
have formulated the resonant Bragg condition for the quasi-
periodic Fibonacci multilayer structures containing exponential
graded material and shown that forbidden band gaps and omni-
directional band gaps to be obtained for periodicity of different
generation Fibonacci sequence structures and their hetrostruc-
tures. In these structures, bandwidth of forbidden and omni-
directional band gaps can be tuned with graded profile parameter
of exponential graded layer.

Motivated by the ability to mold, confine and control of the
electromagnetic waves by different types of GPCs, we now present
the study of the photonic band gap characteristics of 1-D quasi-
periodic GPCs constituted with an exponential/linear graded
dielectric layer. The aims of this work are, we want to show the
reflection spectra, which arise from the propagation of electro-
magnetic waves in quasi-periodic multilayer structures, comprised
of alternating layers of both normal (SiO2) and graded index
materials using a theoretical model based on a transfer matrix
treatment. The quasi-periodic structures follow the Thue–Morse
(TM) and Double-Periodic (DP) substitutional sequences and can
be generated by the following inflation rules: A-AB, B-BA (TM);
and A-AB, B-AA (DP),[4,5] where A and B are the building
blocks modelling of the normal and graded index materials,
respectively. Further, we intend to present a quantitative analysis
of the results, pointing out the distribution of the forbidden
band gaps and total bandwidths for up to the 6th generation,
which gives a good insight about their photonic band gaps and
localization.

The plan of this paper is as follows. In Section 2, we present the
method of calculation employed here, which is based on the
transfer matrix approach. The reflection coefficient and dispersion
relation is then determined. Section 3 is devoted to the discussion
of this reflection spectra and dispersion relation for the Thue–
Morse and Double-Periodic multilayer structures containing linear
and exponential graded index material. Further, we present their
total band gap with Thue–Morse and Double-Periodic generations
for linear and exponential graded index material as one of the
layer. The conclusions of this work are presented in Section 4.

2. Theoretical model and numerical analysis

In this paper, we consider the system of multilayer that is
composed of two layers and stacked alternatively along the
x-direction. The stacks of two layers are arranged according to
the recursion rule of the Thue–Morse (TM) and Double-Periodic
(DP) sequence in different generations [4,5]. These sequences are
based on the two-letter alphabet (A, B) and the substitution rule: σ
(A)¼AB, σ (B)¼BA (TM); and σ (A)¼AB, σ (B)¼AA (DP). The
substitution rule can be written in the form of the following
equations:

σ :
A
B

� �
-

1 1
1 1

� �
A
B

� �
¼ AB

BA

� �
and

σ :
A
B

� �
-

1 1
2 0

� �
A
B

� �
¼ AB

AA

� �

The ratio of the frequencies of the letters A, B in the sequence is
equal for TM and 2 to 1 for DP. The length of the sequence in both
cases at the iteration n is 2n. On the basis of the above substitution
rule, the first few words generated in this way are represented in
Table 1 panels (i) and (ii).

The proposed multilayer structures consist of two kinds of
layers; one has a constant refractive index (1.5) and other has a

linear or exponential varying refractive index (1.5–4.1) as the case
may be. The variation of refractive index in the graded layers is
taken along the direction of the thickness of the layer. The
direction of wave propagation is considered along the x-axis i.e.
the direction normal to the stacked layers and the considered
materials assumed as non-magnetic, non-dispersive and isotropic.
The refractive indices of the considered graded layers vary in
linear and exponential fashion between the initial and final values
as ½nLðxÞ ¼ niþ ðnf �niÞ=dL

� �
x� and ½nEðxÞ ¼ ni expðx=dE log nf =niÞ�,

respectively. Here, ni and nf are the refractive indices at inward
and outward boundaries of the graded layer, respectively [32].

The optical properties of the considered multi-layered struc-
tures are described by well-known theoretical model based on
transfer matrix method (TMM). Transfer matrices are generated by
applying boundary conditions in a plane wave solution of the
Maxwell's wave equation at the interface boundary. The electric
field distribution E(x) in different materials can be written as:

(i) For normal layers:

ENðxÞ ¼ AN expð� iUkN UxÞþ BN expðiUkN UxÞ………: ð1Þ
where AN and BN are arbitrary constants and kN ¼ωUnN=c
represents the propagation wave vector at normal incidence
with a constant refractive index nN . Subscript N represents
the normal layer and ω and c are the angular frequency and
velocity of light, respectively [30].

(ii) For linear graded layers the electric field equation can be
written as

ELðxÞ ¼
ffiffiffiffiffi
ξL

p
U ALJ1=4

ξ2L
2α

 !
þ BLY1=4

ξ2L
2α

 !" #
ð2Þ

where, AL and BL are arbitrary constants and ξL ¼ωUnLðxÞ=c
the propagation wave vector at normal incidence along x-
direction for the linear graded layer with refractive index:
nLðxÞ ¼ niþ ðnf �

�
niÞ=dLÞ x, where ni and nf are the

refractive indices at the initial and final boundary and dL is
the layer thickness. Subscript L represents the linear graded
layer and grading profile parameter of the linearly graded
layer is α¼ ðω=cÞðnf �ni=dLÞ, ω and c are the angular fre-
quency and velocity of light, respectively [32].

(iii) For exponential graded layers:

EEðxÞ ¼ AEJ0
ξE
γ

� �
þ BEY0

ξE
γ

� �
………: ð3Þ

where, AE and BE are arbitrary constants and ξE ¼ ω:nEðxÞ=c
represents the wave propagation vector at normal incidence
along the x-direction for the exponential graded
layer with refractive index nEðxÞ ¼ ni expðγxÞ, where γ ¼
1=dE log ðnf =niÞ; is the grading profile parameter of the
exponentially graded layer, ni and nf are same as defined
in Eq. (2) and dE is the thickness of the exponentially graded
layer. Subscript E represents the exponentially graded layer.
The functions J and Y are the first and second kind Bessel's
functions, respectively.

Using the transfer matrix approach, the amplitudes A0 and B0 of
the electromagnetic field in the air medium at xo0 related to be
the amplitudes Anþ1 and Bnþ1 of the equivalent layer in the (nþ1)
th region through the linear transformation. Therefore, for the
multilayer structures, the total transfer matrix equation can be
written as

A0

B0

 !
¼Mi;j

Anþ1

Bnþ1

 !
ð4Þ
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