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a  b  s  t  r  a  c  t

In this  paper,  the  Gurson–Tvergaard–Needleman  (GTN)  damage  model  is used  to determine  the  forming
limit  curve  of  anisotropic  sheet  metals.  The  mechanical  behavior  of  the matrix  material  is  described  using
Hill’48  quadratic  yield  criterion  and  an isotropic  hardening  rule.  For  this  purpose,  a  VUMAT  subroutine
has  been  developed  and used  inside  the ABAQUS/Explicit  finite  element  code.  The implementation  of  the
constitutive  model  in  the  finite  element  code  is presented  in detail.  Finally,  the  forming  limit  curve of  an
AA6016-T4  sheet  metal  is constructed  using  the developed  VUMAT  subroutine  and  running  numerical
simulation  of  Nakjima  tests.  The  quality  of the  numerical  results  is  evaluated  by  comparison  with  an
experimental  forming  limit  curve.  Furthermore,  theoretical  forming  limit  curves  of  the  AA6016-T4  sheet
are obtained  using  Marciniak–Kuczynski  (M–K) and  modified  maximum  force  criterion  (MMFC)  models.
The  results  show  that the forming  limit  curve  predicted  by the  anisotropic  GTN  model  is in better  agree-
ment  with  the  experimental  results  especially  in  the  biaxial  tension  region.  This  fact  indicates  that  the
GTN  model  is  a useful  tool  in analyzing  the  formability  of  anisotropic  sheet  metals.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The forming limit curve (FLC) is a very useful and common tool
in industries involved in sheet metal forming. This curve is actually
a plot of the major principal strain vs. minor principal strain char-
acterizing the onset of sheet necking. Consequently, FLC divides the
possible combinations of the major and the minor strains into safe
and unsafe regions. More precisely, the strain combinations which
stand below the FLC are considered as safe (acceptable), while the
strain combinations located above the FLC are considered as unsafe.

Since the introduction of the FLC by Keeler and Backhofen
(1963), many attempts have been made to construct it using
experimental, theoretical and numerical methods. Because of the
expenses involved by the experimental procedures of FLC construc-
tion, the theoretical (Hill, 1952; Marciniak and Kuczynski, 1967)
and numerical (Li et al., 2010) methods have been more attractive
to researchers. One of the suitable theoretical approaches for deter-
mination of the FLC is the Gurson–Tvergaard–Needleman (GTN)
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damage model (Gurson, 1977; Tvergaard, 1981, 1982; Tvergaard
and Needleman, 1984). The original formulation of this model has
been proposed by Gurson (1977) by assuming that the degra-
dation of the load carrying capacity and finally the fracture of
ductile metals are caused by the evolution of voids. Gurson’s
model takes into account only the growth of pre-existing voids,
without assuming any generative mechanisms. In order to over-
come this limitation, Tvergaard (1981, 1982) and Tvergaard and
Needleman (1984) have proposed mathematical descriptions of the
void nucleation and coalescence. The final modified model is known
as Gurson–Tvergaard–Needleman (GTN) damage model.

As the metallic sheets are commonly produced by rolling, they
exhibit high levels of anisotropy. Due to this characteristic, it is very
important to include the anisotropy of the matrix material in the
GTN model. There are few works that have dealt with this aspect.
Liao et al. (1997) utilized a similar approach to that proposed by
Gurson (1977) to derive an approximate potential formulation for
the prediction of damage in the metallic sheets. The original fea-
ture of their model consists in the fact that the equivalent stress is
described by Hill’s quadratic (Hill, 1948) and non-quadratic (Hill,
1979) anisotropic expressions. Liao et al. (1997) used anisotropy
parameters defined as the ratio of the transverse plastic strain rate
to the through-thickness plastic strain rate under in-plane uni-
axial loading along different directions. Wang et al. (2004) replaced
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the directional parameters in the model proposed by Liao et al.
(1997) with the average anisotropy parameter. Chen and Dong
(2008) extended the GTN model to characterize the matrix material
through Hill quadratic (Hill, 1948) and Barlat–Lian 3-component
(Barlat and Lian, 1989) expressions of the equivalent stress. Chen
and Dong (2009) proposed extensions of the GTN potential based
on Hill’s quadratic anisotropic expression of the equivalent stress
(Hill, 1948).

Of course, it is possible to solely use the GTN damage model
to predict the fracture of the ductile materials during deforma-
tion. On the other hand, the GTN model could be also used to
construct the forming limit curve. Brunet et al. (1996) studied the
occurrence of necking in square cup deep drawing of a mild-steel
sheet and also extracted the limit strains of the sheet using an
anisotropic Gurson–Tvergaard criterion (Gurson, 1977; Tvergaard,
1981). Brunet et al. (1998) and Brunet and Morestin (2001) pro-
posed a necking criterion based on the load-instability and plane
strain localization assumptions in which the failure of the material
is defined by Gurson–Tvergaard damage model with Hill (1948) and
Barlat and Lian (1989) anisotropy models. He et al. (2011) predicted
the forming limit stress diagram of 5052 aluminum alloy based on
the GTN model. Abbasi et al. (2012a, 2012b) used GTN model to
predict the forming limit curve of an IF-steel and a tailor welded
blank made from IF-steel, respectively. Furthermore, the GTN dam-
age model has been employed to predict the forming limits of
other sorts of sheets like the AA5052/polyethylene/AA5052 (Liu
et al., 2013; Liu and Xue, 2013) and AA3105/Polypropylene/AA3105
(Parsa et al., 2013) sandwich sheets, dual-phase and multi-phase
(Uthaisangsuk et al., 2009; Ramazani et al., 2012) steels.

In this paper, a GTN model based on Hill’s quadratic expres-
sion of the equivalent stress is used to construct the forming
limit curve. The model is implemented as a VUMAT routine in
the ABAQUS/Explicit finite-element code (ABAQUS analysis user’s
manual, 2011). Furthermore, the plastic strain and void volume
fraction distributions near the fracture section are analyzed. The
material parameters involved in the constitutive relationships are
determined by means of an identification procedure that combines
the response surface methodology (RSM) and the simulation of a
uniaxial tensile test.

2. Formulation of the constitutive model and its
Abaqus/Explicit implementation

Abaqus/Explicit allows the implementation of solid material
models by means of the VUMAT routine. Because Abaqus/Explicit
uses corotational components of the Cauchy stress and logarithmic
strain as input/output when communicating with VUMAT, plain
time derivatives of such tensor quantities can be involved in the
formulation of the rate-type constitutive relationships, without
any concern about their objectivity. The model presented below
assumes that the Abaqus/Explicit corotational frame also reflects
the plastic orthotropy of the sheet metal, being initially coincident
with the frame defined by the rolling direction – RD (axis 1), trans-
verse direction – TD (axis 2) and normal direction – ND (axis 3).
The following symbols will denote macroscopic strain and stress
quantities:

εij components of the corotational logarithmic strain tensor sep-

arable into elastic ε(e)
ij

and plastic ε(p)
ij

terms, i.e.

εij = ε(e)
ij

+ ε(p)
ij

(1)

�ij components of the corotational Cauchy stress tensor
p hydrostatic pressure:

p = −���

3
(2)

�̄ Hill’48 equivalent stress:

�̄ =
√

�ijPijk��k�, (3)

where Pijkl are components of a fourth-order tensor by means of
which the constitutive model approximates the plastic orthotropy
of the sheet metal. In general, Pijkl (i, j, k, � =1, 2, 3) are subjected to
the constraints

Pijk� = Pjik� = Pij�k = Pk�ij, Piik� = 0. (4)

Two  other strain/stress parameters will be associated to the fully
dense matrix material:

ε̄(p) equivalent plastic strain (ε̄(p)≥0, ˙̄ε
(p)≥0)

Y yield stress defined as function of ε̄(p) by means of a hardening
law Y = Y[ε̄(p)] > 0.

The elasticity of the sheet metal is described by the isotropic
Hooke’s law

�ij = E

1 + �

[
ε(e)

ij
+ �

1 − 2�
ε(e)

��
ıij

]
, (5)

where E and v are Young’s modulus and Poisson’s ratio, respectively,
while ıij denotes Kronecker’s symbol.

The plastic part of the constitutive model is based on the GTN
potential (Chen and Butcher, 2013)

 ̊ =
{

�̄

Y[ε̄(p)]

}2

+ q1f ∗(f )

{
2 cosh

{
−q2

3p

2Y[ε̄(p)]

}
− q1f ∗(f )

}
− 1, (6)

where

f ∗(f ) =

⎛⎜⎜⎝
f, if f ≤ fC,

fC + f ∗
F − fC
fF − fC

(f − fC ), if fC < f < fF ,

f ∗
F , if f ≥fF ,

with f ∗
F = 1/q1,

(7)

is a porosity parameter depending on the void volume fraction f.
The quantities denoted as q1, q2, fC, and fF in Eqs. (6) and (7) are
material constants. The inequality  ̊ ≤ 0 defines all the admissible
stress states of the sheet metal. More precisely,  ̊ < 0 is associated
to the elastic states and  ̊ = 0 corresponds to the elastoplastic ones.

The flow rule associated to the potential  ̊ can be expressed in
the form

ε̇(p)
ij

= �̇
∂˚

∂�ij
, with

(
�̇ = 0, if  ̊ < 0,

�̇≥0, if  ̊ = 0,
(8)

or, if Eqs. (6), (3) and (4) are taken into account,

ε̇(p)
ij

= 1
�̄

ε̇(p,dev)Pijk��k� + 1
3

ε̇(p,vol)ıij, (9)

where

ε̇(p,dev) = �̇
∂˚

∂ �̄
, ε̇(p,vol) = −�̇

∂˚

∂p
, (10)

and

∂˚

∂ �̄
= 2 �̄

{Y[ε̄(p)]}2
,

∂˚

∂p
= −3q1q2

f ∗(f )
Y[ε̄(p)]

sinh

{
−q2

3p

2Y[ε̄(p)]

}
·
(11)

Eq. (10) allows deducing the following consistency condition
that accompanies the constraint  ̊ = 0 in the elastoplastic states of
the sheet metal:

ε̇(p,dev) ∂˚

∂p
+ ε̇(p,vol) ∂˚

∂ �̄
= 0. (12)
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