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a b s t r a c t

Using local operations and classical communication two remote participants may transform one shared
entanglement to other form. In this paper, we evaluate its success probability for arbitrary initial
entanglement and final entanglement by using the majorization condition and solving an equivalent
nonlinear optimization problem. The optimal probability is determined by their entanglement coeffi-
cients. The theoretical scheme may be approximated by an adaptable and iterative scheme, and is
schematically realized using the phonotic entanglement with the help of the cross-Kerr nonlinearity.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Different from classical resources, quantum entanglement has
been explored to improve the manipulation and transmission of
information in various quantum applications [1,2]. Based on the
nonlocality, entanglement is used for quantum teleportation [3,4],
quantum dense coding [5,6], quantum secret sharing [7,8], quan-
tum secure direct communication [9,10], and so on. These schemes
mostly depend on qubit systems. As extensions, d-dimensional
quantum states (qudits) and d-dimensional entangled systems
have attracted great attentions because of their larger nonlocality
and powerful capability in quantum information processing. In
fact, the larger systems may provide different quantum correla-
tions and can be used to improve the security of quantum
cryptography schemes [11–15], the implementation of quantum
logic gates [16,17], and the experimental simulation of quantum
algorithms [18]. These applications are mostly based on special
entanglements such as the maximal entanglement. Unfortunately,
experimentally prepared entanglements are always unsuitable for
these quantum tasks because of unavoidable noise environments
or imperfect experiments. Moreover, some entanglements such as
photonic entanglements have to be stored in special quantum
repeaters for long-distance quantum communication and may be
affected by quantum decoherence. Therefore, how to obtain

required entanglement from other entanglements is worth inves-
tigating for quantum applications.

In this paper, we only focus on the bipartite entanglement
transfer under the local operations and classical communications
(LOCC). Bennett et al. [19] firstly introduced a special bipartite
entanglement transfer, i.e., entanglement concentration protocol
(ECP) in which two participants change partially entangled Bell
states into the maximal entanglement using the Schmidt projec-
tion method and collective measurements for two-photon sys-
tems. Here, the entanglement is known to two participants.
Nielsen [20] presented an equivalent majorization condition for
the deterministic entanglement transfer. For arbitrary initial par-
tial entanglement, the optimal success probability is obtained by
Lo and Popescu [21]. Followed these results, various schemes have
been proposed for the theoretical or experimental qubit entangle-
ment concentration [22–40], or the qudit entanglement concen-
tration [41,42]. However, few result has been obtained for general
case [20,43], i.e., transforming arbitrary entangled qudit to other
entanglement. Here, we firstly investigate the success probability
of general bipartite entanglement transfer by defining new entan-
glement in terms of the majorization condition and solving an
equivalent nonlinear optimization problem. The optimal probabil-
ity is determined by the minimal ratio of entanglement coeffi-
cients of the new entanglement. And then, for the convenience of
different experimenters, an iterative method is explored to
approximate the optimal case using adaptable parameters. More-
over, as a schematic experimental implementation, the phonotic
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entanglement transfer will be proposed, by taking use of polarization
qudit representation jj〉d≔jðd�1� jÞH; jV〉 for j¼ 0;…; d�1, where
jH〉 and jV〉 represent the horizontal and vertical polarizations
respectively. The optimal photonic scheme requires the cross-
phase modulation technology [44–51], which is based on the weak
cross-Kerr nonlinearity [52,53]. Generally, our results may be useful
for general quantum information processing based on qudit systems.

The rest of this paper is organized as follows. Section 2 is firstly
devoted to finding new entanglement under the majorization
order of two known entanglements. Some simulations are also
shown that all entanglements in the unit sphere can be determi-
nistically transformed into new entanglements which lie in a small
area of the unit sphere. And then an equivalent optimization
problem is proposed for the general entanglement transfer from
the new entanglement to the goal state. The optimal scheme will
be realized iteratively with some adaptable parameters. Section 3
contributes to the optimal schematic photonic entanglement
transfer with the help of auxiliary photon and the weak cross-
Kerr nonlinearity while the last section concludes this paper.

2. General bipartite entanglement transfer

Suppose that two participants Alice and Bob share an entangle-
ment

jΨ 〉AB ¼ ∑
d�1

j ¼ 0
ajjj〉Ajj〉B; ð1Þ

where qudit systems A and B belong to Alice and Bob respectively,
and all known real coefficients ajs satisfy ∑d�1

j ¼ 0a
2
j ¼ 1. Here, all

complex phases expðiθjÞ of ajs may be reduced from one local
rotation ∑d�1

j ¼ 0expð� iθjÞjj〉〈jj by Alice or Bob. In the following, they
want to obtain another bipartite entanglement

jΦ〉AB ¼ ∑
d�1

i ¼ 0
biji〉Aji〉B; ð2Þ

where new real coefficients bjs satisfy ∑d�1
j ¼ 0b

2
j ¼ 1. This task may

be completed deterministically if two coefficient sets fa20; a21;…;

a2d�1g and fb20; b21;…; b2d�1g satisfy the majorization condition
stated in Ref. [20]. However, this is impossible for most entangle-
ments jΨ 〉 and jΦ〉. So, we have to find other methods to address
general entanglement transfer. In fact, this problem may be solved
by evaluating the optimal success probability and present the
optimal probabilistic scheme. Especially, for the case of b0 ¼ b1 ¼
⋯¼ bd�1 ¼ 1=

ffiffiffi
d

p
(the maximal bipartite entanglement jΦ〉AB),

general entanglement transfer scheme should be reduced to
previous entanglement concentration scheme.

2.1. Deterministic entanglement transfer

Before completing general entanglement transfer, new bipar-
tite entanglement may be obtained from jΨ 〉AB in terms of jΦ〉AB
under the majorization order. In fact, assume that

a20ra21r⋯ra2d�1; ð3Þ

b20rb21r⋯rb2d�1: ð4Þ
Let

c2i ¼
∑i

j ¼ 0a
2
j

∑i
j ¼ 0b

2
j

; i¼ 0;1;…; d�1: ð5Þ

If

c20rc21r⋯rc2d�1; ð6Þ

i.e., a20=b
2
0ra21=b

2
1r⋯ra2d�1=b

2
d�1, the entanglement coefficient

set fb20; b21;…; b2d�1g is named as majored by the entanglement
coefficient set fa20; a21;…; a2d�1g [20]. In this case, jΦ〉AB can be
determinately transformed to jΨ 〉A;B. Meanwhile, jΨ 〉A;B cannot be
determinately changed into another entanglement jΨ 0

〉 which may
be used to improve the success probability of the bipartite
entanglement transfer. This is because that there does not exist
the entanglement coefficient set E which is majored by the

entanglement coefficient set fa20; a21;…; a2d�1g, and fb20; b21;…;

b2d�1g is majored by E. It may be simply stated that they cannot
find another entanglement jΨ 0

〉 with coefficient set E between

fa20; a21;…; a2d�1g and fb20; b21;…; b2d�1g in terms of the majorization

order. For other cases that two coefficient sets fb20; b21;…; b2d�1g and
fa20; a21;…; a2d�1g have no direct majorization order, let

α2
j0
¼ c2j0 ¼min

j
fc2j ; j¼ 0;1;…; d�1g; ð7Þ

α2
j1
¼
∑j1

i ¼ j0 þ1a
2
i

∑j1
i ¼ j0 þ1b

2
i

¼min
k

∑k
i ¼ j0 þ1a

2
i

∑k
i ¼ j0 þ1b

2
i

; k¼ j0þ1;…; d�1

8<
:

9=
;; ð8Þ

⋮ ð9Þ

α2
jr
¼
∑d�1

i ¼ jr� 1 þ1a
2
i

∑d�1
i ¼ jr� 1 þ1b

2
i

¼min
k

∑k
i ¼ jr� 1 þ1a

2
i

∑k
i ¼ jr� 1 þ1b

2
i

; k¼ jr�1þ1;…; d�1

8<
:

9=
;:

ð10Þ

It easily follows that 0rα2
j0
rα2

j1
r⋯rα2

jr
r1, 1r j0r j1r

⋯r jr ¼ d�1 and E ¼ fα2
0b

2
0;α

2
0b

2
1;…;α2

0b
2
j0
, α2

1b
2
j0 þ1;…;α2

1b
2
j1
, ⋯,

α2
r b

2
jr� 1 þ1;…;α2

r b
2
jr
g is an entanglement coefficient set (one prob-

ability distribution). Thus the entanglement coefficient set

fb20; b21;…; b2d�1g is majored by the following coefficient set E and
E is majored by fa20; a21;…; a2d�1g. It means that the entanglement

jΨ 0
〉¼ ∑

j0

t ¼ 0
α0bt jtt〉ABþ ∑

r

k ¼ 1
∑
jk

s ¼ jk� 1 þ1
αkbsjss〉AB ð11Þ

may be deterministically obtained from jΨ 〉AB under the LOCC. More-

over, fb20;b21;…; b2d�1g is majored by the coefficients of jΨ 0
〉AB. Some
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Fig. 1. Bipartite entanglement concentration under the LOCC. jΨ 〉AB ¼ a0j00〉þ
a1j11〉þa2j22〉 is the initial bipartite entanglement shown as the red figure,
jΦ〉AB ¼ 1=

ffiffiffi
3

p
ðj00〉þj11〉þj22〉Þ is the final bipartite entanglement shown as the

green point, and jΨ 0〉AB ¼ α0j00〉þα1j11〉þα2j22〉 is the new bipartite entanglement
defined in Eq. (11) shown as the blue figure. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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