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a b s t r a c t

We employed a real-space formulation of orbital-free density functional theory using fi-
nite-element basis to study the defect-core and energetics of an edge dislocation in
Aluminum. Our study shows that the core-size of a perfect edge dislocation is around ten
times the magnitude of the Burgers vector. This finding is contrary to the widely accepted
notion that continuum descriptions of dislocation energetics are accurate beyond ∼1–3
Burgers vector from the dislocation line. Consistent with prior electronic-structure stu-
dies, we find that the perfect edge dislocation dissociates into two Shockley partials with a
partial separation distance of 12.8 Å. Interestingly, our study revealed a significant influ-
ence of macroscopic deformations on the core-energy of Shockley partials. We show that
this dependence of the core-energy on macroscopic deformations results in an additional
force on dislocations, beyond the Peach–Koehler force, that is proportional to strain
gradients. Further, we demonstrate that this force from core-effects can be significant and
can play an important role in governing the dislocation behavior in regions of in-
homogeneous deformations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Dislocations are line defects in crystalline materials which play an important role in governing the deformation and
failure mechanisms in solids. The energetics of dislocations and their interactions with other defects—solute atoms, pre-
cipitates, grain boundaries, surfaces and interfaces—significantly influence the mechanical properties of crystalline materials
(cf. e.g. Hirth and Lothe, 1968; Meyers et al., 2006; Uchic et al., 2004; Trinkle and Woodward, 2005; Zhu et al., 2007; Gavini
et al., 2007b; Leyson et al., 2010). For instance, the kinetic barriers to dislocation motion—dislocation glide and climb—and
their dependence on crystallographic planes and directions govern ductility and creep in metals (Bulatov et al., 1995;
Duesbery and Vitek, 1998; Lu et al., 2000; Kabir et al., 2010). Interaction of dislocations with vacancies, solute atoms and
precipitates results in solid–solution strengthening/softening, precipitate hardening and aging in metals (Pollock and Argon,
1992; Lu and Kaxiras, 2002; Trinkle and Woodward, 2005; Yasi et al., 2010; Leyson et al., 2010). Further, dislocation in-
teractions with grain boundaries and surfaces are responsible for the observed strengthening mechanisms like the Hall–
Petch effect (Hansen, 2004), and enhanced yield strength in surface dominated nanostructures (Uchic et al., 2004; Greer and
Nix, 2006).

The behavior of dislocations (nucleation, kinetics, evolution) in crystalline materials is governed by physics on multiple
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length-scales. In particular, a dislocation produces elastic fields that are long-ranged, and through these elastic fields in-
teracts with other defects and external loads at macroscopic scales. On the other hand, the quantum-mechanical and
atomistic scale interactions play an important role in governing the nucleation and kinetics of these defects. While atomistic
scale interactions can significantly influence the behavior of dislocations, these are localized to a region around the dis-
location line referred to as the dislocation-core. Thus, the energy of a dislocation is composed of the stored elastic energy
(Eelastic), associated with the elastic fields outside the dislocation-core, and a core-energy (Ecore) associated with quantum-
mechanical and atomistic scale interactions inside the dislocation-core. Continuum theories based on elastic formulations
have been widely used to study deformation and failure mechanisms mediated through dislocations (cf. e.g. Rice, 1992;
Fleck et al., 1994; Nix and Gao, 1998; Ghoniem et al., 2000; Arsenlis and Parks, 2002), where the energetics of dislocations
are solely determined by the elastic energy and the core-energy is often assumed to be an inconsequential constant. In order
to overcome the inability of continuum theories to describe the dislocation-core, explicit atomistic calculations based on
empirical interatomic potentials have also been employed to study deformation mechanisms mediated by dislocations (cf.
e.g. Tadmor et al., 1996; Kelchner et al., 1998; Gumbsch and Gao, 1999; Li et al., 2002; Marian et al., 2004a,b), and have
provided many useful insights. However, interatomic potentials, whose parameters are often fit to bulk properties, may not
accurately describe the defect-core which is governed by the electronic-structure (cf. e.g. Gumbsch and Daw, 1991; Ismail-
Beigi and Arias, 2000; Woodward et al., 2008).

Electronic-structure calculations using plane-wave implementations of density functional theory (DFT) have been em-
ployed to study the dislocation core-structure in a wide range of crystalline materials (cf. e.g. Ismail-Beigi and Arias, 2000;
Blase et al., 2000; Frederiksen and Jacobsen, 2003; Woodward et al., 2008; Clouet et al., 2009) and the energetics of dis-
location–solute interactions in metals with different crystallographic symmetries (Trinkle and Woodward, 2005; Yasi et al.,
2010). As the displacement fields produced by isolated dislocations are not compatible with periodic boundary conditions,
these calculations have either been restricted to artificial dipole and quadrapole configurations of dislocations or free-
surfaces have been introduced to contain isolated dislocations. Recent efforts have also focused on the development of
flexible boundary conditions by extending the lattice Green's function method to electronic-structure calculations (Trinkle,
2008). Flexible boundary conditions accurately account for the long-ranged elastic fields of an isolated dislocation
(Woodward et al., 2008), however, the electronic-structure in these studies is computed by introducing free surfaces to
accommodate the restrictive periodic boundary conditions associated with plane-wave based DFT implementations. While
these aforementioned studies have provided useful insights into the dislocation core-structure, a direct quantification of the
dislocation core-energy solely from electronic-structure calculations and its role in governing dislocation behavior has
remained elusive thus far. We note that some prior ab initio studies using a dipole or quadrapole configuration of dis-
locations (cf. e.g. Blase et al., 2000; Li et al., 2004; Clouet et al., 2009) have attempted to indirectly compute the core-energy
of an isolated dislocation by subtracting from the total energy the elastic interaction energy between dislocations in the
simulation cell and their periodic images. This approach assumes that the spacing between dislocations is large enough that
the dislocation-cores do not overlap. However, these prior studies have been conducted on computational cells containing a
few hundred atoms, which, as demonstrated in this work, are much smaller than the core-size of an isolated perfect edge
dislocation in Aluminum.

In this work, we conduct large-scale electronic-structure calculations using orbital-free density functional theory to
study an edge dislocation in Aluminum. In our study, we use the WGC kinetic energy functional (Wang et al., 1999) which
has been shown to be in good agreement with Kohn–Sham DFT for a wide range of material properties in Aluminum (Wang
et al., 1999; Carling and Carter, 2003; Ho et al., 2007; Shin et al., 2009). We employ a local real-space formulation of orbital-
free density functional theory (Gavini et al., 2007c; Radhakrishnan and Gavini, 2010), where the extended interactions are
reformulated as local variational problems. This real-space formulation of orbital-free density functional theory is used in
conjunction with the finite-element basis that enables the consideration of complex geometries and general boundary
conditions, which is crucial in resolving the aforementioned limitations of plane-wave basis in the study of energetics of
isolated dislocations.

We begin our study by computing the size of the dislocation-core for a perfect edge dislocation in Aluminum. To this end,
we consider a perfect edge dislocation with the atomic positions given by isotropic elasticity theory. For these fixed atomic
positions, we identify the region where the perturbations in the electronic-structure arising from the defect-core are sig-
nificant and have a non-trivial contribution to the dislocation energy. This allows us to unambiguously identify the dis-
location-core from the viewpoint of energetics. Our study suggests that the dislocation core-size of a perfect edge dis-
location is about b10| |, where b denotes the Burgers vector. This estimate is much larger than conventional estimates based
on displacement fields, which suggest a dislocation core-size of b1 3– | | (Hirth and Lothe, 1968; Peierls, 1940; Banerjee et al.,
2007; Weinberger and Cai, 2008), and underscores the long-ranged nature of the perturbations in electronic fields arising
from defects. We note that a similar long-ranged nature of the electronic fields was observed in recent studies on point
defects (Gavini et al., 2007a; Radhakrishnan and Gavini, 2010; Gavini and Liu, 2011). As a next step in our study, we allow for
atomic relaxations, and the perfect edge dislocation dissociates into Shockley partials with a partial separation distance of
12.8 Å. The dislocation energy per unit length of the relaxed Shockley partials in the simulation domain corresponding to
the identified core-size, which denotes the dislocation core-energy, is computed to be 0.4 eV/Å.

We next study the role of macroscopic deformations on the dislocation core-energy and core-structure. In particular, we
considered a wide range of macroscopic deformations including: (i) equi-triaxial strains representing volumetric de-
formations; (ii) uniaxial strains along the Burgers vector, normal to the slip plane, and along the dislocation line; (iii) equi-
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