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a b s t r a c t

Spatially accelerating beams are non-diffracting beams whose intensity is localized along curvilinear
trajectories, also incomplete circular trajectories, before diffraction broadening governs their propaga-
tion. In this paper we report on numerical simulations showing the conversion of a high-numerical-
aperture focused beam into a nonparaxial shape-preserving accelerating beam having a beam-width
near the diffraction limit. Beam shaping is induced near the focal region by a diffractive optical element
that consists of a non-planar subwavelength grating enabling a Bessel signature.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The accelerating optical beam belongs to a novel class of
electromagnetic wave whose peak intensity follows a curved
trajectory as it propagates in free space. Since the first accelerating
beam proposed within a paraxial context and propagating along
parabolic trajectories [1], more general classes of solutions
have been obtained including elliptical trajectories [2,3], hyper-
bolic trajectories [4], and practically any arbitrary trajectory [5].
Recently Kaminer et al. presented nonparaxial spatially accelerat-
ing shape-preserving beams, which are solutions to the full
Maxwell equations and propagate along a circular trajectory
reaching angles near 901, after which diffraction broadening takes
over and the beams spread out [6]. Experimental evidences of
these incomplete Bessel wave fields have been reported in Ref. [7].
In these studies, the caustic-curve radius driving the beam
trajectory of the accelerating beam is several orders of magnitude
higher than the wavelength. This leaves the open question of the
generation of accelerating circular beams with a caustic curve
radius near the wavelength, and its influence over the beam width
approaching the diffraction limit.

In this paper we demonstrate that a high-localized accelerating
beam may be generated along a circular caustic curve. The beam
profile deviates from an Airy distribution and leaves a Bessel
signature [8]. To generate an Airy beam in free space, an involving
method cubic-phase wrapping to a Gaussian beam is typically
used [9–11]. However, this previous method is not appropriate for
using in a compact-sized system because bulky optical devices,

such as femtosecond lasers and spatial light modulators, are
required. Recently new methods are used for launching an accel-
erating wave packet that are based on the use of a metallic
diffractive element [12,13]. Such planar diffracting structures have
a slowly varying periodicity to induce a cubic dephase. In this
paper, differently we propose a non-planar slit arrangement
sustained by dispersion localities. Our multilayered metal–dielec-
tric is piecewise periodic in the angular coordinate, thus enabling
to transform a high-aperture focused beam into a near-diffraction-
limited nonparaxial accelerating beam.

2. Accelerating beams with Bessel signature

In this paper we deal with accelerating beams that are the
solutions to Maxwell's equations. At first we consider a harmonic
wave field propagating in free space in the xy plane. Moreover
its polarization will be transverse magnetic (TM), enabling the
excitation of surface plasmon resonances, in such a way that the
magnetic field may be set as H¼ zhzðx; yÞ. Under these circum-
stances, the scalar wave field hz satisfies the 2D Helmholtz
equation ðk2þ∇2

t Þhz ¼ 0, where k¼ 2π=λ is the free-space wave-
number. A general expression for the scalar magnetic field in
cylindrical coordinates is given by

hzðr;ϕÞ ¼
Z

aðθÞ expðik � rÞ dθ; ð1Þ

where aðθÞ is the apodization function, r¼ ðr;ϕÞ denotes the point
under observation, and k is the wave vector of modulus k and
azimuthal coordinate θ. Eq. (1) stands for a superposition of plane
waves, whose amplitude is modulated azimuthally by a complex
term a, provided that the wave vectors may be oriented in all
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directions. Eq. (1) gives a complete solution provided that hz does
not diverge at r¼0.

The solutions for the Helmholtz equation in cylindrical coordi-
nates include the Bessel functions in a natural way. For that
purpose we point out that using the Jacobi–Anger identity, the
Bessel beams can be represented in the form of a plane-wave
Fourier expansion in the form of Eq. (1). Considering the phase-
only linear term aðθÞ ¼ expðilθÞ we finally attain a magnetic field of
the form hz ¼ 2πil expðilϕÞJlðkrÞ, where Jlð�Þ is a Bessel function of
the first kind and order l. This field has an intensity profile with a
maximum that follows a circular caustic curve of radius rl ¼ jlj=k.
Let us now consider an incomplete Bessel wave field of a given
order l. In this case, the apodization function is no longer a phase-
only term. Here the apodization of the angular spectrum will be
governed by a non-uniform amplitude distribution. Therefore we
take Eq. (1), which may be set as

hz ¼
Z

aGðθÞ exp½iΘðθÞ� expðikx cos θþ iky sin θÞ dθ; ð2Þ

For convenience, the apodization function is now factorized into a
phase-only term of argument ΘðθÞ ¼ lθ and the real function
aGðθÞ ¼ ð1= ffiffiffiffi

π
p

ΩÞ exp½�ðθ�θ0Þ6=Ω6�. The latter function has a
super-Gaussian distribution with semi-angular aperture Ω within
the domain of integration jθ�θ0jrπ, and it is centered at
θ0 ¼ π=2. The parametric representation of the associated caustic
curve may be set as [8]

x¼ ðl=kÞ sin θ and y¼ ð� l=kÞ cos θ; ð3Þ

drawing the beam trajectory for angles θ where aGðθÞ takes
significant values. We point out that the acceleration of the beam
does not modify its phase velocity along the caustic curve [14]. In
Fig. 1 we show the amplitude jhzj corresponding to a complete
Bessel wave field of order l¼30 [subfigure (a)] along with the
incomplete Bessel beam of semi-aperture Ω¼π/2 [subfigure (b)].
The accelerating beams propagate in free space at a wavelength
λ¼ 531 nm. We observe that the circular caustic curve in Fig. 1
(b) is also incomplete exhibiting the same angular range 2Ω of its
spectral precursor aGðθÞ. We indicate that the spatial acceleration
might cease to occur for a low-Ω super-Gaussian distribution
where the beam falls into a rectangular symmetry [8].

The role of expðilθÞ in Eq. (2) is functionally identical to the
phase term produced by a blazed grating achieving a maximum
diffraction efficiency at ðl=k;0Þ. As a consequence, a circular blazed
grating potentially transforms a focused beam, associated with an
incomplete Bessel wave field of order l¼0, into an accelerating
beam. The latter represents the basis of our study. Note that an

increasing order l leads to accelerating fields localized further from
the origin of coordinates.

Unfortunately, a blazed grating cannot generate a linear
dephase perfectly. From a practical point of view, it is convenient
that the linear function ΘðθÞ will be substituted by a piecewise-
uniform function. In the simple model followed schematically in
Fig. 2, the diffractive optical element is segmented into regions of
angular aperture Δθ¼ 2π=lN, where a flat phase response is
generated in it. Therefore, the maximum number of segments will
be lN enabling to induce an overall dephase of 2πl radians, which
are associated with the angular phase distribution of a Bessel wave
field of order l. In other words, a dephase ΔΘ¼ 2π=N from
neighboring domains will be produced. We point out that the
number N of steps used to achieve a 2π dephase is critical, as we
will see below. Finally by increasing the step number N-1 the
phase distribution converges to the linear function ΘðθÞ ¼ lθ.

Next we show some numerical experiments performed by a
finite-element analysis commercial software [15], showing the
field deviations produced by using a finite number N of steps
when generating an incomplete Bessel beam. In order to excite the
accelerating beam we used a non-uniform surface current of
circular symmetry that is concentric with the origin of coordinates.
In order to produce a beaming along the positive y-axis, the
current distribution is apodized by a super-Gaussian distribution
aGðθÞ that is centered at θ0 ¼ �π=2; in addition we set Ω¼ 3π=8
and the applied wavelength is 531 nm. Note that if the surface
current has a flat phase distribution, the generated field will be
focused at r¼0. For that reason we stamp an additional modula-
tion in the surface current of the form exp½iΘðθÞ�. Thus we will
have an appropriate orientation of the accelerating beam. Fig. 3
illustrates the resulting field distribution of jhzj from a circular
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Fig. 1. The modulus of the magnetic field hz corresponding to Bessel-driven accelerating beams of order l¼30 propagating at λ¼ 531 nm: (a) complete Bessel wave field and
(b) incomplete Bessel wave field with semi-aperture Ω¼ π=2. The centered white dot represents the origin of coordinates, r¼0.
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Fig. 2. Schematic representation of piecewise function Θ for N¼4 and also for
N-1, leading to ΘðθÞ ¼ lθ.
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