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a b s t r a c t

We propose a simple technique to generate entanglement between distant cavities by using entangle-
ment swapping involving atomic momenta. For the proposed scheme, we have two identical atoms, both
initially in their ground state, each incident on far apart cavities with particular initial momenta. The two
cavities are prepared initially in superposition of zero and one photon state. First, we interact each atom
with a cavity in a dispersive way. The interaction results into atom–field entangled states. Then we
perform EPR state measurement on both atomic momentum states which is an analog of Bell
measurement. The EPR state measurement is designed by passing the atoms through cavity beam
splitters which transfers the atomic momentum state into the superposition state. Finally, these atoms
are detected by the detector. After the detection of the atoms, we can distinguish that cavities in one of
the Bell states. This process leads to two distant cavity fields entanglement.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Entanglement, a non-local trait of quantum theory, has many
applications in quantum informatics [1]. The cavity quantum electro-
dynamics (QED) techniques are used to generate atom–field, atom–

atom and field–field entanglement [2]. Entanglement in the atomic
external degrees of freedom using Bragg diffraction is also proposed
[3,4]. Bragg diffraction of atomic de-Broglie waves from optical cavity
also covers some aspects of quantum information [5,6].

Entanglement swapping, an important technique of entangle-
ment, entangles two parties that have never interacted before.
Entanglement swapping between two photons that have never
coexisted is demonstrated [7]. Bell measurements are much useful
in quantum communication protocols such as teleportation [8]
and entanglement swapping [9]. Entanglement swapping is used
in quantum repeaters [8], in order to overcome the limiting effect
of photon loss in long-range quantum communication.

In this paper, we use a simple technique i.e. atomic interferometry
for swapping entanglement between atoms and cavities. This way
we are able to entangle distant cavities without direct interaction. For

the proposed scheme, we have two cavities which are in super-
position state of zero and one photon. The cavity superposition
state is experimentally demonstrated by Rauschenbeutal et al. [10].
First, we interact two atoms, initially in their ground state having
momentum jPi

0〉, iϵf1;2g each with a cavity in the Bragg diffraction
regime. Bragg scattering allows only one of the two directions of
propagation for each atom along the cavity field which are the
incident and exactly opposite one. The detuning is large as compared
to single photon Rabi frequency and hence atom practically stays in
the ground state and the state of the field does not change. Here we
take first-order Bragg diffraction for simplicity, however higher order
Bragg scattering can be taken into account in the same fashion
in order to allow larger separation between the atoms after the
interaction. The non-resonant interaction entangles the atoms in
their external degrees of freedom i.e. in their momentum states with
the cavities. Then these entangled atoms are passed through beam
splitter. For this purpose we use two beam splitters, one for non-
deflected atomic momentum state and the other for deflected atomic
momentum state. The beam splitter brings the atomic momentum
state of these indistinguishable atoms in the superposition state.
A cavity in the superposition state of zero and one photon can be
used as a beam splitter [11]. At last, after passing through the beam
splitter, these identical atoms are detected. Here, we use four
detectors for four possible momentum splits. The detection process
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gives us the information that the two cavities are in the Bell state.
Thus entanglement between atoms is swapped to that between two
far away cavities.

Our paper proceeds as follow: in Section 2, we explain the
Bragg diffraction of atom from the cavity field and the formation of
atom–field entanglement. In Section 3, we analyze the action of
beam splitter which transfers the atomic momentum component
into the superposition state. We then briefly explain the detection
process and the final result. Finally we conclude in Section 4 and
give experimental parameters to perform our proposed scheme in
the laboratory.

2. Bragg atom–field interaction

For the proposed scheme, we first entangle two atoms with their
respective cavity fields by atom–field interaction in the Bragg regime.
For the purpose, we consider two atoms, A1 and A2, both initially in
their ground state, g1 and g2, having transverse momentum state, jPi

l0 〉,
where i¼1, 2 stands for atoms A1 and A2 and Pl0 ¼ ðl0=2Þℏk with l0
being a positive even integer. We have two cavities, C1 and C2, which
are in the superposition state of zero and one photon i.e. ðj0〉þj1〉Þ=

ffiffiffi
2

p

[3] as shown in Fig. 1. This superposition can be generated by first
passing a two level atom in its excited state for half a Rabi cycle
through the field. We dispersively interact atom, A1, with cavity, C1,
and atom, A2, with cavity, C2. The off-resonant interaction is followed
to avoid decoherence that stems from spontaneous emission. Large
detuning and large interaction time ensure conservation of energy
which leads to only two possible directions of scattering for atoms,
first the incident one, Pl0 , and second exactly opposite to the incident
transverse momentum direction, P� l0 . The off-resonant Bragg diffrac-
tion invokes only the virtual transition among different atomic levels
[11]. The initial state vector for the system before interaction is

Ψ ð0Þ〉¼ 1
2

∑
i ¼ 1;2

ð 0i〉þ 1i〉Þ � gi; P
ðiÞ
l0
〉:

���������
����� ð1Þ

Total Hamiltonian governing this atom–field interaction under the
dipole and rotating wave approximation with atom of mass, M, and
centre of mass momentum, P, is [3]

Ĥ ¼ P̂
2

2M
þ1
2
ℏω0σ̂ zþℏνâ† âþℏg cos ðkx̂Þ½σ̂ þ âþ σ̂ � â

† �: ð2Þ

Here, σ̂ 7 and σ̂ Z are the Pauli operators, x̂ is the position operator of
atom, â (â†Þ is the field annihilation (creation) operator, g is the
vacuum Rabi frequency and Δ is the detuning between the atomic

transition frequency, ω0, and the field frequency, ν. We follow the
large detuning case wherewe have no direct atomic transition and it is
rare to find the atom in their excited state. Hence, the system may be
governed by following effective Hamiltonian, under the adiabatic
approximation as

Ĥeff ¼
P̂
2

2M
�ℏjgj2

2Δ
n̂σ̂ � σ̂ þ ð cos 2kx̂þ1Þ: ð3Þ

The state of each ith atom–field pair at any time t is given as

Ψ ðtÞ〉¼ 1ffiffiffi
2

p ∑
m

l ¼ �m
ðC0; ~P l

0; gi; ~P
ðiÞ
l 〉þC1; ~P l

1; gi; ~P
ðiÞ
l 〉Þ;

������
����� ð4Þ

where m is the total number of the orders of deflections and
~Pl ¼ Pl0 þ lℏk, l being an even integer. Time evolution of the state
vector is given by the Schrodinger equation

iℏ
∂jΨ ðtÞ〉

∂t
¼Heff Ψ ðtÞ〉

�� ð5Þ

We have

cos 2kx̂j ~Pl〉∽j ~P ðlþ2Þ〉þj ~P ðl�2Þ〉 ð6Þ
and we drop the unchanged atomic ground state vector jgi〉. Under
condition of Bragg scattering with only two possible directions
of deflection l¼0 with ~P0 ¼ Pl0 and l¼ � l0 with ~P � l0 ¼ P� l0 . Thus
we obtain the state of each ith atom–field pair after interaction
as [3,12]

Ψ ðtÞ〉¼ 1ffiffiffi
2

p j0i; P
ðiÞ
l0
〉þC1;l0 ðtÞj1i; P

ðiÞ
l0
〉þC1;� l0 ðtÞj1i; P

ðiÞ
� l0

〉
� ����� ð7Þ

where Cn;7 l0 is the probability amplitude of the atom exiting with
momentum Pþ l0 or P� l0 when there are n photons in the field and
is given as

Cn;7 l0 ðtÞ ¼ e� iAnt Cn;7 l0 ð0Þ cos
1
2
Bnt

� �
þ iCn;8 l0 ð0Þ sin

1
2
Bnt

� �� 	
ð8Þ

where

An �
� ðjgj2n=4ΔÞ2
ωrecðl0�2Þð2Þ for l0a2

0 for l0 ¼ 2

8><
>:

and

Bn �
ðjgj2n=2ΔÞl0=2

ð2ωrecÞl0=2�1½ðl0�2Þðl0�4Þ…4:2�
for l0a2

jgj2n=2Δ for l0 ¼ 2

8>><
>>:

��������

��������
Initially both atoms are sent with momentum Pl0 , so probability of
finding the exiting atom in either directions flips as a cosine
function of interaction time. We adjust the interaction time of
atoms with fields to ensure that if there is one photon in the fields,
the atoms definitely get deflected. The adjusted time is thus
t ¼ rπ=jBnj, where r is an odd integer. For first-order Bragg
scattering, this time simplifies to t ¼ 2rπΔ=jgj2. The wave function
of the two atom–field pairs is

Ψ ðtÞ〉¼ 1ffiffiffi
2

p j01; P
ð1Þ
l0
〉þ ie� iϕj11; P

ð1Þ
� l0

〉
� �� 	����

� 1ffiffiffi
2

p j02; P
ð2Þ
l0
〉þ ie� iϕj12; P

ð2Þ
� l0

〉
� �� 	

; ð9Þ

where ϕ¼ rπA1=B1. The atoms in their external degrees of free-
dom become entangled with their respective cavity fields. The
combined state of the system can be written as

Ψ ðtÞ〉¼ 1
2 ð 01;02; P

ð1Þ
l0
; Pð2Þ

l0
〉þ ie� iϕ 01;12; P

ð1Þ
l0
; Pð2Þ

� l0
〉þ ie� iϕ 11;02;j

���������
Pð1Þ
� l0

; Pð2Þ
l0
〉�e� i2ϕj11;12; P

ð1Þ
� l0

; Pð2Þ
� l0

〉Þ: ð10Þ

Fig. 1. We show dispersive interaction of atoms with cavity fields. The atoms with
initial momentum, jPi

l0 〉, interact with the cavities which are in superposition of
zero and one photon state. The interaction time is set such that when the cavities
are in zero photon state, the atoms do not get deflected and have same momentum
jPi

l0 〉 as initial one. For one photon state of the cavities, the atoms are deflected and
have momentum jPi

� l0 〉.
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