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inhomogeneous medium. It is shown that it solves any inhomogeneous refractive index profile. Its main
advantage is that it does not require integration of either the differential wave equation or the refractive
index profile, as it is the case with other methods. The solution is expressed in a closed form. The
obtained numerical results compare favorably with both the slow-varying envelope method as well as
with the exact numerical method.
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1. Introduction

Photonic device design often involves light propagation studies
in different structures with varying material properties, including
inhomogeneous materials and optical waveguides. Traditionally,
either approximate partially analytic methods or entirely numer-
ical approaches have been used. Especially in device design a deep
insight into light propagation properties is beneficial if an analytic
method is available and can be applied. In practice however, one
has to resort quite often to numerical approaches as analytical
solutions are limited to just a few situations.

There is a number of interesting results and analytical
approaches published that relate to the problem discussed here.
The investigation of inhomogeneous waveguides is presented in
[1-8]. A theoretical study of waves in a circular-cylindrical radially
inhomogeneous guiding medium is proposed in [1]. A vector
theory based upon Maxwell's equations is used to derive linear
homogeneous fourth-order equations satisfied by the longitudinal
electric and magnetic field components for a medium in which the
permittivity decreases monotonically from the propagation axis.

Uniform waveguides filled with inhomogeneous dielectric
whose permittivity varies along one dimension are studied in [2].
Emphasis is given to the modes of propagation and to the
calculation of the propagation constants. A novel approach based
on Asymptotic Iteration Method is presented in [3] to solve
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analytically the light propagation through a 1-D inhomogeneous
slab waveguide. An approach based on Nikiforov-Uvarov method
is presented in [4] to solve the light propagation through a 1-D
inhomogeneous slab waveguide analytically.

A new set of exact solutions for the propagating modes in slab
waveguides is obtained in [5]. Using the approach proposed, one
can obtain a large class of inhomogeneous media with position-
dependent permittivity and permeability with exact solutions for
TM modes. The general solution is obtained in [6] of the 1-D wave
equation of electrodynamics of inhomogeneous, anisotropic media
in the form of a converging matrix series (an exponential integral).
Maxwell's equations are solved for an inhomogeneous medium in
[7], which has a coordinate-dependent dielectric function.

The Ermakov equation is derived from Maxwell's equations in
[8] for inhomogeneous transparent media for 1-D cases. The
plasma waveguides are investigated in [9,10]. The problem of
strong magnetic field is solved in a 1-D non-uniform plane plasma
waveguide in [10]. The propagation of an electrostatic wave in
a non-uniform relativistic warm plasma waveguide under the
effect of a high-frequency electric field is investigated in [10].
A new mathematical technique called “separation method” is
applied to the two-fluid plasma model to separate the equations,
which describe the system, into two parts, time and space. A wave
approach is used in the analysis of wave motions in 1-D non-
uniform waveguides in [11].

Maxwell's equations in their usual form provide a solution with
a general time variation propagating in a loss-free medium.
However, for a lossy medium, an attempt to obtain a general
solution, which satisfies specified boundary and initial conditions,
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leads to divergences. It has been shown in [12] that modifying
Maxwell's equations by adding an extra term, referred to as the
“fictitious” magnetic charge density, allows one to obtain general
solutions, with the boundary and initial conditions satisfied, in
a lossy medium without encountering any divergencies. Maxwell's
equations formulated for media with gradually changing conduc-
tivity are reduced to Volterra integral equations in [13].

Analytical and numerical solutions have been obtained in [14]
for nonlinear waveguide structures with Kerr-like nonlinearity and
linear homogeneous media. Three techniques are proposed for
investigating the propagation characteristics of TE nonlinear sur-
face waves propagating along a single interface of a nonlinear-
inhomogeneous (single periodic layer) dielectric structure.

A new general formula that expresses the electric (or the
magnetic) field vector that satisfies general vectorial time-
dependent Maxwell's equations as a summation of time integrals
and space derivatives has been derived in [15]. It is completely
general and it is applicable to time-varying, inhomogeneous,
nonlinear vectorial fields. It yields correct results for known
analytic solutions and in some cases offers an attractive method
of finding solutions without necessity of space integration. To our
knowledge, this form has not so far been known or published
elsewhere. In this paper we show its applicability and usefulness
in expressing solutions to 1-D inhomogeneous cases analytically
without necessity to integrate whatsoever. The 1-D problem is
considered on purpose in order to demonstrate clearly that our
new solution describes the situation correctly in a closed form and
the results can be compared with those obtained by others (e.g.
[16]) using different independent methods. However presented
expression allows us to deal only with the 1-D problems. The
investigation of 2-D optical waveguides [17] is considered as the
future work.

The new, interesting and important results presented here is
that our solution does not require cumbersome time-consuming
integration and does not have to resort to performing numerical
evaluations or employing analytical approximations, as is the case
in many practical problems. The results are novel and original. The
objective of this paper is to focus on the fundamental, mathema-
tical aspects of the new solution presented and verified in [15] as it
applies to practical cases of 1-D inhomogeneous media.

2. General solution for 1-D inhomogeneous media

Considering a 1-D problem, the dielectric constant of a medium
varies only in the x-direction, which is basically a simple geometry
of the problem studied. Maxwell's equations in the SI units for
non-magnetic non-dispersive media are usually written as
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with all the symbols known notoriously throughout the literature.
The displacement vector is usually written out as D = ¢oE + P, with
the polarization vector being expressed containing the linear
medium (e) as well as the possible nonlinear polarization (Py)
via material susceptibilities ¥'s as follows:
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It should be mentioned, that we are dealing with the linear
medium. Thus Py; = 0. Moreover, we have to stress, that &, = &,(x).
The basic derivation of our new solution is described in detail
in [15]. Here we present only the final result for the electric field.

For simplicity, we introduce the following symbols:
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With these notations, one writes the new solution as follows:
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where m is even, and c is the speed of light in vacuum. S is a so-
called source function that can be either independent of the solved
electric field (left-hand side above) or it can contain the field itself,
thus making the solution being implicit and recursive.
We now apply the solution in Eq. (4) to a 1-D inhomogeneous
case thus obtaining
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Let us assume that the solution of Eq. (5) depends upon the
time as (harmonic fields)

E=I0,E,,0] x e~ J*t, (6)
Suppose that the source function S is expressed as follows [18]:
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where
a; = —Ag/2
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A is the propagation constant.

We have chosen the above-presented expression of the source
function because we are considering the symmetric profiles that
have been studied by others and thus can be mutually compared.

In order to find Ay one needs to substitute Eq. (7) into Eq. (5).
The derivatives are evaluated as
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After evaluating the time integration and space derivations in
Eq. (5) a series is obtained:
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where ko = w/c. The substitution of the coefficients in Eq. (8) into
expression (10) requires some rather cumbersome algebraic
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