
Doppler-spectrally encoded imaging of translational objects

Hidenao Iwai n, Toyohiko Yamauchi, Mitsuharu Miwa, Yutaka Yamashita
Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita, Hamamatsu, Shizuoka, 434-8601, Japan

a r t i c l e i n f o

Article history:
Received 30 August 2013
Received in revised form
20 December 2013
Accepted 5 January 2014
Available online 22 January 2014

Keywords:
Doppler effect
Spectral encoding
Translational object
Phase imaging
Synthetic aperture tomography
Imaging flow cytometry

a b s t r a c t

The image of a translational target is moved by the Doppler-shifted phase of the diffraction field of the
light incident on the target. However, no one has yet utilized the physical relationship between the
Doppler effect and the diffraction field in microscopic imaging. Here, we demonstrate Doppler-spectral
encoding of the diffraction field of a translational target. We found that the angular spectrum of the
translational object was encoded by the Doppler spectrum, and the interferometric recombination of the
Doppler spectrum yielded a 2-dimensional complex image. We further discovered that two Doppler
effects, which are evoked by the movement of the target against a stationary source and detector, can be
exploited simultaneously in synthetic aperture tomography. Doppler-spectrally encoded imaging may
lead not only to label-free imaging flow cytometry of living cells but also to non-destructive imaging of
products during inspection on a conveyer belt in either the sound or electromagnetic regimes.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

If light interacts with a moving target, it can acquire a Doppler-
shifted phase whose continuous change yields a Doppler-shifted
frequency. This physical process holds true, for example, when
perceiving one's own hand movement although the speed of that
motion is in fact very slow compared with that of light. However,
no one perceives the hand movement itself as resulting from the
Doppler effect. Similarly, no one has exploited the Doppler effect
to perform microscopic coherent imaging of translational objects.
Hufnagel [1] first proposed in 1966 that rotating objects such as
astronomical satellites can be imaged by exploiting the Doppler
effect. Goodman [2] reviewed the topic, and the idea was later
extended to the acoustic and microwave regimes [3]. Hufnagel
referred to this method as “Doppler-spread imaging” and assumed
that the light incident on the satellite returns back to the detectors
specularly because the satellite is very far away. As a result, his
technique detects the specular reflection field rather than the total
diffraction field. In the case of objects that are close to the
observer, a slit has been used to super-resolve the image by
exploiting the Doppler-shifted light only from the specular reflec-
tions [4,5]. These techniques must utilize specific incident and
scattering vectors because they require that the projection dis-
tance to the rotational axis is linearly related to the Doppler-
shifted frequency. Such imaging techniques are useful in cases
where the objects are far away or a low numerical aperture

objective lens is facing the objects. A separate non-microscopic
imaging technique utilizing the Doppler effect is known as
synthetic aperture radar (SAR) (initially called “Doppler Beam
Sharpening” (DBS) by C. A. Wiley in the 1950s). This technique
also exploits the phase shift caused by the Doppler effect. In SAR,
the experimenter records the amplitude and instantaneous phase
shift 2kR (of the complex field), which signify the zone plate for a
distance R between the scatterer and the airborne antenna as an
aircraft approaches, passes, and recedes from the scatterer. The
recorded complex field is the Fourier transform of an image of the
scatterer. In the field of biological applications, spectral encoding
techniques [6–8] artificially encode positions on the sample with
wavelengths of light. Such techniques are used to perform reflec-
tance imaging of translational objects such as cells flowing in
micro-fluid devices or blood vessels by scanning the samples with
a transverse spectrally encoded line beam. Yelin [9] measured 2-
dimensional flow velocities across a tube by using the Doppler
effect of a priori spectrally encoded light.

In contrast to a priori spectrally encoded imaging [6–9], we
impinge a monochromatic light beam (not a line beam) that has a
diameter that covers the translational object and detects the entire
diffraction field, which consists of frequencies that are a posteriori
Doppler-spectrally encoded, with a 2-dimensional camera. Here,
we first introduce a Doppler spectrum representation of the
diffracted field for the translational objects according to the Born
approximation. Then, we perform temporal 2-dimensional coher-
ent imaging of the translational objects using the Doppler spec-
trum representation. Finally, we perform synthetic-aperture
tomography based on the Doppler spectrum representation for
3-dimensional, label-free imaging flow cytometry applications.
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2. Methods

2.1. Principle

The Doppler effect is evoked in two ways: once when the
incident laser light of the stationary transmitter system impinges
on the moving target and once when the light is scattered from
the moving target and received by a stationary detector [10]. The
Doppler-shifted frequency Δω of the diffracted light from the
translational object is therefore the inner product of the velocity V
of the translational object and the difference vector of the incident
light wave vector k0 and the scattering wave vector k:

Δω¼ ðk�k0Þ � V : ð1Þ
For simplicity, we assume that the incident light k0 is normal to

the translational direction of the object such that the right side of
Eq. (1) represents the inner product of k and V.

In the late 19th century, Ernst Abbe described an object as a fine
grating in his theory of image formation in the microscopy [14], and
all objects are composed of gratings having various spatial frequen-
cies. Because an imaging system is a linear system, we can consider a
grating with a single spatial frequency as an example. In Fig. 1, a
sinusoidal grating whose spatial frequency is Kg along the x-axis is
moving linearly along the x-axis at a constant velocity V. The
collimated light depicted in green in Fig. 1 is normally incident on
the translational grating. Because the first-order (71) diffracted light
beams are frequency-shifted due to Doppler effect, these beams are
depicted as blue and red while the zero-order light is the same color
as the incident beam as it does not have any frequency shift. If k is
the scalar of the wave vector k, the scattering angles 7θ of the first-
order diffracted light beams are expressed as 7sin�1(Kg/k) [15]. The
frequency shift Δω of the first-order diffracted light is calculated as
Δω¼7KgV by substituting the scattering angle θ into Eq. (1). Here,
we find that the spatial frequency Kg is linearly related to the
Doppler-shifted frequency Δω by the factor V. Fig. 1 also depicts
that these frequency-shifted diffracted beams are focused on the
Fourier plane in spatially separated locations by lens 1 and that the
temporally different frequency-shifted beams are spatially recom-
bined on the back focal plane (image plane) of lens 2 such that the
focused image will move. Although temporal focusing [11–13] does
not utilize the Doppler effect, the recombination of spatially sepa-
rated frequencies of broadband light with a stationary grating is
analogous to the recombination of spatially separated Doppler-
shifted frequencies of monochromatic light with a translational
grating.

So far, we have described an intuitive understanding of Doppler
spectral encoding and decoding of an image of a translational
object. Next, we introduce an integral equation for the scattering
potential F(r) in Eq. (2) to generate a rigorous relationship

between the Doppler-shifted frequency and the diffracted field.
We will base our analysis on the first-order Born approximation
for the diffracted field UðSÞ

1 of a stationary object at infinity.

UðSÞ
1 ðrÞ ¼

Z
V
Uðr'ÞFðr'ÞGðr�r'Þd3r'

¼ expðikrÞ
r

Z
V
Fðr'Þexpð� iK � r'Þd3r'; as kr-1 ð2Þ

where G(r) is the Green's function exp(ik|r–r'|)/|r–r'|, K is k(s–s0),
and F(r) is k2[n2(r)–n02(r)]/4π (n and n0 are the refractive indices of
the sample and the medium, respectively). s0 and s are the unit
vectors of the incident and scattered light. This equation is well
known, yet no one to our knowledge has utilized it to take the
Doppler effect of a translational object into account [1–5]. We
derived the diffracted field of a translational object by applying
Galilean transformation [16] to that of a stationary object repre-
sented in Eq. (2). The first inertial frame r1, which includes the
transmitter and receiver, now stands still while the second inertial
frame r2, which includes the object, moves at a constant velocity
V. According to Galilean relativity, the space and time coordinates
in the two frames are related by

r2 ¼ r1�Vt1; t2 ¼ t1: ð3Þ
We can apply this transformation to Eq. (2) because the

velocity of the object is small compared to the speed of light.
Imagine that an incident field U(r) is transmitted and a scattered
field (field propagator) G(r) is received in the first frame, and the
scattering potential F(r) is in the second frame. Substituting with
Eq. (3) into the term F(r) and changing variables yields the
scattered field of a translational object:

UðsÞ
1DopplerðrÞ ¼

expðikrÞ
r

exp½� iðω0þKxVxþKyVyþKzVzÞt� ~F ðKx;Ky;KzÞ
ð4Þ

where we added an original light frequency term exp(–iω0t). ~F ðKÞ
is the Fourier transform of the scattering potential F(K) and is
known as the scattering amplitude in the far-field zone of the
scatterer. It is very simply related to the angular spectrum
representation [17]. In the case of a relatively thin object, the
representation is the angular spectrum itself. In this sense, the
diffracted field of the translational object at infinity consists of an
angular spectrum whose phase term is temporally modulated by
the Doppler-shifted frequency Δω according to Eq. (5). In Fourier
optics, it is well-known that the Fourier image of a translational
object changes in the phase but not the amplitude. This fact is also
mathematically known as a “phase (or time) shift” and is the one
of the properties of the Fourier transform. The continuous change
of the phase in the angular spectrum yields a change of the
temporal frequency, which is called the Doppler-shifted frequency.
In other words, the Doppler effect causes a conversion of spatial
frequencies (angular spectrum) into temporal frequencies. Later,
we will show that the angular spectrum of a translational object is
frequency-shifted (colored) along the translational direction.

Eq. (4) implies that the angular spectrum of the scattered field
~F ðKÞ is encoded by a Doppler-shifted frequency kV (in simple
nomenclature, the Doppler spectral encoding) if the incident light
is normal to the translational direction of the object (i.e., k0V¼0).
Furthermore, if the translation axis (V) of the object is parallel to
Kx (i.e., Vy¼Vz¼0), one can at once retrieve the kx-axis component
of the scattering potential F(Vxt) in time from an integration of the
scattered field with respect to kx. This integration explains how the
image of a translational object is focused. Considering that the act
of focusing an image of a stationary object can be defined as the
recombination of the angular spectrum of the object and that the
angular spectrum ~F ðkVÞ is related to the temporal spectrum exp
(ikV) by the Doppler effect (Eq. (1)), the recombination of the
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Fig. 1. Principle for converting the spatial frequency of a translational grating to a
temporal frequency by the Doppler effect. The scattering angle θ is defined by sin–

1(Kg/k). k is the wavenumber, and Kg is the spatial frequency of the grating.
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