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a b s t r a c t

We investigate the spontaneous emission properties of a five-level atom driven by a microwave field,
where the two transitions are coupled to a double-band photonic-band-gap reservoir. The effects of the
band-edge positions and the Rabi frequency of the microwave field on the emission spectrum are
discussed. It is found that several interesting phenomena in spontaneous emission spectra such as
spectral-line enhancement, spectral-line elimination, and fluorescence quenching can be controlled
simply by adjusting the Rabi frequency of the driving field and the transition frequency detunings from
band edges. These phenomena originate from quantum interference induced by band-edge modes and
the driving field.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Spontaneous emission is a basic problem in quantum optics,
which has attracted extensive attention because of its potential
applications in high-precision spectroscopy and magnetometery
[1,2], lasing without inversion [3,4], transparent high-index materials
[5], etc. In 1946, Purcell was the first to point out that spontaneous
emission [6] rates of atoms can be enhanced when they are matched
in a resonant cavity. Since then, many schemes, such as vacuum
induce coherence [7], phase control spontaneous emission [8], and
external driving fields [9–12], have been proposed to modify spon-
taneous emission. As a fundamental process in the interaction
between radiation and matter, vacuum induce coherence has been
applied in coherent population trapping (CPT), ultrafast all-optical
switching [13], quantum information processing [14], etc. Recently,
quantum interference induced by the driving field has become one of
the important methods of controlling spontaneous emission. Wu
et al. have studied the spontaneous emission spectra of a coherently
driven four-level atom, and shown a very rich behavior of the
spectrum originated from the quantum interference between com-
petitive decay channels [12]. Li et al. reveal the quantum interference
resulting from energy shifts and the effect of the dynamic energy
shift on the decay rate [15].

Another relevant and very interesting topic is the photonic
band gap materials [16–19], which have been investigated both
experimentally and theoretically. One can design and construct
photonic crystals with defects, preventing light from propagating
in certain directions with specified frequencies. A defect can be

used as a highly efficient resonant cavity. Hence one can achieve
Purcell0s scheme to control spontaneous emission in photonic
crystal defect cavity efficiently. Particularly, spontaneous emission
near the edge of a photonic-band-gap has aroused intensive
interest during the past two decades [20–27]. John and Quang
studied the spontaneous emission from a three-level atom
coupled to the non-Markovian reservoir, in which they found the
spectral splitting and subnatural linewidth of spontaneous emis-
sion [28]. Although the spontaneous emission spectrum in a Λ-
type system has been studied using the two-band model, it is
considered one transition coupled to a modified reservoir and
other to occur in free space [29]. They have demonstrated that the
emission spectrum is quite dependent on the embedded position
of the atom and the width of the photonic-band-gap. Since the
driving field can be used as an effective way to control the
spontaneous emission, a three-level atom [11] and a four-level
atom [21] driven by a microwave field have been studied theore-
tically. In this paper we investigate the spontaneous emission
spectrum of a five-level atom in a non-Markovian reservoir using a
two-band mode, in which the effect of Rabi frequency of the
external field and the transition frequency detunings from band
edges are discussed in detail.

2. Theoretical model and equations

We consider a five-level atom as shown in Fig. 1(a). The upper
level j1〉 is coupled by a two-band reservoir to the two lower levels
j3〉 and j4〉, and by a microwave field with frequency ωc and a Rabi
frequency Ω to anther lower level j2〉, while the transition from the
excited level j1〉 to the metastable level jm〉 is assumed to be
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coupled by vacuum modes in free space. The density of states of
the two-band model is shown in Fig. 1(b). The transition between
j1〉-j3〉 ðj1〉-j4〉Þ is considered to be near resonant with the lower
band-edge (upper band-edge) of the photonic band gap reservoir,
while the transition between j1〉-j4〉 ðj1〉-j3〉Þ is assumed to be
far away from the lower band-edge (upper band-edge). The
Hamiltonian in the interaction representation is given by

H¼HAþHB; ð1Þ
with

HA ¼ �ℏΔj2〉〈2jþ iℏΩj1〉〈2j� iℏΩnj2〉〈1j; ð2Þ

HBðtÞ ¼ iℏ∑
λ
gλe

� iðωλ �ω10Þt j1〉〈mjaλ

þ iℏ∑
k
g3ke

� iðωk �ω13Þt j1〉〈3jak

þ iℏ∑
k
g4ke

� iðωk �ω14Þt j1〉〈4jakþH:c ., ð3Þ

where the detuning Δ is defined by Δ¼ω12�ωc , gλ denotes the
coupling constant of the atom with the free space vacuum modes
ðλÞ associated with the transition j1〉-jm〉 , while g3k and g4k
denote the coupling constant of the atomwith the kth mode of the
field, associated with the two transitions j1〉-j3〉 and j1〉-4〉,
respectively. Based on the dressed-state theory, with regard to our
atom system with an external field, the two old levels j1〉 and j2〉
can be substituted with the dressed levels jα〉 and jβ〉. The dressed-
state is defined by the eigenvalue equations HAjα〉¼ ℏλαjα〉 and

HAjβ〉¼ ℏλβjβ〉, where λα ¼ �Δ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔ=2Þ2þjΩj2

q
and λβ ¼ �Δ=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔ=2Þ2þjΩj2

q
. The explicit form of the dressed-state is given by

jα〉¼ sin θj2〉þ ieiϕc cos θj1〉;
jβ〉¼ cos θj2〉� ieiϕc sin θj1〉; ð4Þ

where sin θ¼ jΩj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2αþjΩj2

q
, cos θ¼ λα=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2αþjΩj2

q
, and Ω¼

jΩjeiϕc , where ϕc is defined as the phase of the microwave field.
The state vector of the atomic system at an arbitrary time t can be
written as

jΨ ðtÞ〉¼∑
λ
bmλðtÞa†λjm; f0g〉þαðtÞjα〉þβðtÞjβ〉

þ∑
k
½b3kðtÞa†kj3; f0g〉þb4kðtÞa†kj4; f0g〉�: ð5Þ

where jf0g〉 represents the vacuum of electromagnetic field, and a†k is
the creation operator for the kth vacuum mode with frequency ωk.
From Eqs. (1)–(3) and (5), after some simple calculations, we can
derive the coupled amplitude equations

_bmλ ¼ igλe
iϕc eiðωλ �ω10Þt ½βðtÞ sin θ�αðtÞ cos θ�; ð6Þ

_αðtÞ cos θ� _βðtÞ sin θ

¼ � ieiϕcΩ ½αðtÞ sin θþβðtÞ cos θ��
þ∑

λ
gλbmλðtÞe� iðωλ �ω10Þtþ∑

k
g3kb3kðtÞe� iðωk �ω13Þt
h

þg4kb4kðtÞe� iðωk �ω14Þt
io

; ð7Þ

_αðtÞ sin θþ _βðtÞ cos θ¼ iΔ½αðtÞ sin θþβðtÞ cos θ�
þ iΩneiϕc ½βðtÞ sin θ�αðtÞ cos θ�; ð8Þ

_b3kðtÞ ¼ ig3ke
iϕc eiðωk �ω13Þt ½βðtÞ sin θ�αðtÞ cos θ�; ð9Þ

_b4kðtÞ ¼ ig4ke
iϕc eiðωk �ω14Þt ½βðtÞ sin θ�αðtÞ cos θ�: ð10Þ

By substituting Eqs. (6), (9) and (10) into Eq. (7) we obtain
integrodifferential equation

_αðtÞ cos θ� _βðtÞ sin θ

¼
Z t

0
dt0½βðt0Þ sin θ�αðt0Þ cos θ� ∑

λ
g2λ e

� iðωλ �ω10Þðt� t0 Þ
�

þ∑
k
g23ke

� iðωk �ω13Þðt� t0 Þ þ∑
k
g24ke

� iðωk �ω14Þðt� t0 Þ
#

� iΩe� iϕc ½αðtÞ sin θþβðtÞ cos θ� ð11Þ
The first summation in Eq. (11) can be dealt with the Weisskopf–
Wigner approximation and we obtain

∑
λ
g2λ e

� iðωλ �ω10Þðt� t0 Þ ¼ γ

2
δðt�t0Þ: ð12Þ

For the second and third summations in Eq. (11), however, the
Weisskopf–Wigner approximation is not applicable as the density
of states of the double-band photonic-band-gap reservoir varies
much more quickly than that in free space. Hence the above result
cannot be applied to the modified reservoir modes, to solve this
problem, we introduce the following memory kernel:

K13ðt�t0Þ ¼∑
k
g23ke

� iðωk �ω13Þðt� t0 Þ

¼ g3=213

Z
dωρlðωÞe� iðω�ω13Þðt� t0 Þ;

K14ðt�t0Þ ¼∑
k
g24ke

� iðωk �ω14Þðt� t0 Þ

¼ g3=214

Z
dωρuðωÞe� iðω�ω14Þðt� t0 Þ; ð13Þ

where g13 and g14 are coupled constants of the two transitions
j1〉-j3〉 and j1〉-j4〉, respectively, while ρu and ρl are the density of
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Fig. 1. (a) Schematic representation of a five-level atom, where ωc and Ω denote
carrier and Rabi frequency of a microwave field respectively, and the excited level
j1〉 is coupled by a modified reservoir to the two lower levels j3〉 and j4〉. (b) Density
of states of the two-band model.
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