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a b s t r a c t

The self-consistent model based on morphological representative patterns is applied to
the realistic case of the linear viscoelasticity of polymers reinforced by elastic nano-
particles coated with a viscoelastic interphase. This approach allows to study the effect of
such microstructure parameters as particle dispersion, particle size distribution and
interparticle distance distribution. Under the assumption that the interphase has the
same thickness around all reinforcing particles, it is shown that the particle size
distribution has little effect on the effective properties of the heterogeneous material,
whereas the particle dispersion and the interparticle distance distribution have stronger
impacts.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Few studies have investigated the interest of the morphological representative pattern (MRP) approach introduced by
Stolz and Zaoui (1991) and which defines a micromechanics framework that accounts for the microstructure characteristics
of materials. Bornert (1996) has included the MRP approach in a self-consistent scheme which has been applied mainly by
this author and his co-workers. For instance, Bilger et al. (2007) used this self-consistent scheme to study the effect of a non-
uniform void distribution in porous materials and Chabert et al. (2004) applied it to viscoelastic polymers reinforced by
silica, but without accounting for a possible material interphase or for particle size distributions.

Taking an interphase into account in various materials has been performed by using the 4-phase self-consistent model in
many papers. This model is based on a 3-phase spherical inclusion embedded in the homogeneous equivalent medium and
has been given with full details by Maurer (1990), with applications to interphases in viscoelastic materials by Maurer
(1986), Schaeffer et al. (1993), Eklind and Maurer (1996), Colombini et al. (1999), Reynaud et al. (2001), Colombini et al.
(2001), Colombini and Maurer (2002), among others. A derivation of the same model leading to different equations, has also
been proposed by Hashin and Monteiro (2002), for an interphase problem in elastic materials.

In a recent work (Diani et al., 2013), the present authors studied the viscoelastic behavior of several carbon-black filled
styrene butadiene rubbers (SBRs). The experimental data showed evidences in favor of the existence of an interphase at the
rubber–filler interface, with enhanced viscoelastic properties compared to the bulk matrix viscoelasticity. The behavior and
the thickness of the interphase were estimated by using the 4-phase self-consistent model, which allowed a very good
prediction of the viscoelastic behavior of several filled SBRs, but the interphase thickness was estimated to an arguably large
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value of 5 nm for spherical particles with a radius of 30 nm. Therefore, it seemed interesting to apply a more elaborate
model that allows for the introduction of more microstructure parameters, and to see how the evaluation of the interphase
thickness evolves. With the MRP approach, one may study the effect of parameters such as particle dispersion, particle size
distribution and interparticle distance distribution. The method is applied here to one of the above-mentioned carbon-black
filled rubbers, where the carbon-black agglomerates are approximated by elastic spherical particles, and where both the
polymer interphase and the polymer matrix are viscoelastic. The mechanical behaviors considered for the constitutive
phases are realistic, and therefore the homogeneous equivalent medium can be compared to the behavior of an actual
carbon-black filled SBR. Considering actual materials gives a sound framework to study the impact of some of the
parameters used in the MRP approach.

The paper is organized as follows. In the next section, the general equations of the MRP self-consistent model are
detailed in a comprehensive and an easy way, in order to favor its use among the scientific community. Additional equations
that are useful for the specific case of 3-phase spherical patterns are also detailed, and the model parameters are discussed.
Then, the effects of particle dispersion, particle size distribution (based on realistic carbon-black filler distributions), and
interparticle distance distribution on the predicted viscoelastic behavior of the heterogeneous material are examined by
accounting for a large number of patterns. The comparison between the model predictions and the behavior of an actual
filled rubber provides estimates for the interphase thickness according to the microstructures considered.

2. Morphologically representative pattern-based self-consistent model

2.1. General theory

The main motivation of the MRP self-consistent model introduced by Bornert (1996) is to account for some dispersion
and size effects that cannot be included in classical homogenization schemes. Given a schematic representation of a material
reinforced by randomly distributed particles of various sizes and geometries (Fig. 1), the idea is to recognize the various
patterns that are found within the material (Fig. 2) and to build a homogenization scheme that takes them into account.

Let us assume that the heterogeneous material contains p constitutive phases with volume fractions fj and elastic
stiffness tensors C j, jAf1;2;…pg. The objective of any homogenization scheme is to compute the behavior Ch of the
homogeneous equivalent medium (HEM) defined by

Ch ¼∑
j
f j C j : Aj ð1Þ

where the average strain localization tensor Aj in phase j is given by

ϵ j ¼ Aj : E ð2Þ
where ϵ j is the average strain in phase j and E is the overall strain applied to the heterogeneous material that may be written
as

E¼∑
j
f j ϵj : ð3Þ

Let us account now for the description of the heterogeneous material as a perfectly disordered distribution of patterns of
n different types, plus a complement of matrix material left between the patterns, as shown in Fig. 2. The latter residual
matrix volume has no specific shape, but it is treated as a single spherical homogeneous pattern Ω0 because of its
statistically isotropic distribution over the heterogeneous material, as done in the Hashin and Shtrikman (1963) approach
for bounds. This differs from the spherical shape used for the other patterns, which originates from the actual shape of the
particles. In general, several copies of each Ωλ pattern (λ40) are present in the heterogeneous medium, but considering a
single copy is sufficient in a self-consistent model, where any pattern is assumed to behave as if surrounded by the
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Fig. 1. Schematic representation of a material reinforced by randomly distributed particles of various sizes and coated with an interphase.
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