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a b s t r a c t

Three dimensional calculations of ductile fracture under mode I plane strain, small scale
yielding conditions are carried out using an elastic-viscoplastic constitutive relation for a pro-
gressively cavitating solid with two populations of void nucleating second phase particles.
Larger inclusions that result in void nucleation at an early stage are modeled discretely while
smaller particles that require large strains to nucleate voids are homogeneously distributed. Full
field solutions are obtained for eight volume fractions, ranging from 1% to 19%, of randomly
distributed larger inclusions. For each volume fraction calculations are carried out for seven
random distributions of inclusion centers. Crack growth resistance curves and fracture surface
roughness statistics are calculated using standard procedures. The crack growth resistance is
characterized in terms of both JIC and the tearing modulus TR. For all volume fractions con-
sidered, the computed fracture surfaces are self-affine over a size range of nearly two orders of
magnitude with a microstructure independent roughness exponent of 0.53 with a standard
error of 0.0023. The cut-off length of the scale invariant regime is found to depend on the
inclusion volume fraction. Consideration of the full statistics of the fracture surface roughness
revealed other parameters that vary with inclusion volume fraction. For smaller values of the
discretely modeled inclusion volume fraction (r7%), there is a linear correlation between
several measures of fracture surface roughness and both JIC and TR. In this regime crack growth
is dominated by a void-by-void process. For greater values of the discretely modeled inclusion
volume fraction, crack growth mainly involves multiple void interactions and no such
correlation is found.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Two fundamental questions in the mechanics and physics of fracture are:

1. What is the relation between observable features of a material's microstructure and its resistance to crack growth?
2. What is the relation between observable features of a material's microstructure and the roughness of the fracture surface?

An obvious corollary question is: What is the relation, if any, between a material's crack growth resistance and the
roughness of the corresponding fracture surface?
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Here, we report on calculations of ductile crack growth aimed at addressing these questions. At room temperature,
ductile fracture of structural metals generally occurs by the nucleation, growth and coalescence of micron scale voids.
The voids nucleate either by debonding or cracking of inclusions and/or second phase particles. This process was identified
by Tippur (1949) and subsequently documented by Puttick (1959), Rogers (1960) and Gurland and Plateau (1963).
Micromechanical modeling of this process of ductile fracture initiated with the work of McClintock (1968) and Rice and
Tracey (1969). Reviews from a range of perspectives and with extensive references are available from Goods and Brown
(1979), Garrison and Moody (1987), Tvergaard (1990) and Benzerga and Leblond (2010).

In a variety of structural alloys, the distribution of void nucleating particles can be idealized as involving two size scales;
larger inclusions that nucleate voids at relatively small strains and smaller particles that nucleate voids at much larger
strains. The size of the void nucleating particles is typically between 0:1 μm and 100 μm, with volume fractions of no more
than a few percent. It is well appreciated that the distribution of void nucleating particles plays a major role in setting the
crack growth resistance in such materials. We idealize such a microstructure by modeling the larger inclusions discretely (e.
g. MnS inclusions in steels) to introduce a length scale, while the smaller particles (e.g. carbides in steels) are taken to be
homogeneously distributed. This type of idealized microstructure has been used in a variety of 2D and 3D ductile fracture
studies, e.g. Needleman and Tvergaard (1987), Mathur et al. (1996), Tvergaard and Needleman (2006). However, it is only
recently that the computational capability has been available, e.g. Needleman et al. (2012), Tang et al. (2013), to compute
ductile crack growth of sufficient extent and in sufficient detail to quantify fracture surface roughness as in Needleman et al.
(2012), Ponson et al. (2013, submitted for publication).

Although the qualitative study of fracture surface morphology dates back to the sixteenth century, technological
advancements (ASM Handbook, 1987) and advancements in the description of complex scale invariant geometries (Feder,
1988) in the twentieth century have made quantitative statistical fractography possible. In particular, Mandelbrot et al.
(1984) were the first to quantitatively characterize the scale invariant properties of fracture surfaces and termed them
fractal (Mandelbrot, 1983). Subsequently, the distinction between self-similar and self-affine objects was appreciated
(Mandelbrot, 1985). A function y¼ hðxÞ is said to exhibit self-similar (or fractal) properties if it remains statistically invariant
under a uniform dilatation in the x and y directions, while a self-affine function is statistically invariant under the
anisotropic scaling hðλxÞ ¼ λHhðxÞ. A self-affine function with Hurst exponent H is a fractal object with dimension D¼ 2�H
(where D is the box or Minkowski–Bouligand dimension, see e.g. Moreira et al., 1994) when viewed at sufficiently small
length scales but is an ordinary one dimensional object (D¼1) when viewed over a sufficiently large length scale, see for
example Barabasi and Stanley (1995) or Feder (1988). Fracture surfaces have been shown to be self-affine, not self-similar.
The self-affine nature of the roughness of fracture surfaces can be characterized by the Hurst exponent of the correlation
function of the fracture surface profile, also referred to as the roughness exponent. The self-affine nature of the roughness of
fracture surfaces has been observed over a range of size scales in a wide variety of materials (metals, ceramics, glasses,
rocks) and under a wide variety of loading conditions (quasi-static, dynamic, fatigue), see for example Underwood and
Banerji (1986), Dauskardt et al. (1990), Cherepanov et al. (1995), Bouchaud (1997), Charkaluk et al. (1998).

In Mandelbrot et al. (1984) a negative correlation was found between what they termed the fractal dimension of the
fracture surface roughness and the corresponding impact energy (equivalent to a positive correlation with the roughness
exponent). This gave rise to the hope that the fractal dimension of the fracture surface roughness could be related to the
material's toughness. Subsequent studies have been inconclusive, with some studies reporting a positive correlation, Wang
et al. (1988), Ray and Mandal (1992), others a negative correlation, Mu and Lung (1988), Su et al. (1991), Carney and
Mecholsky (2013) reported a positive or negative correlation depending on the fracture mechanism, and still others
reported no correlation, Pande et al. (1987), Richards and Dempsey (1988), Davidson (1989). Charkaluk et al. (1998) argued
that the discrepancy between these results is related to the methods used to calculate the fractal dimension.

Bouchaud et al. (1990) proposed that the exponent characterizing the scale invariance of the fracture surface roughness
is universal, i.e. independent of the material and its toughness as long as the fracture mechanism remains fixed.
Alternatively, a multifractal characterization of fracture surface roughness has been suggested as discussed at length by
Cherepanov et al. (1995). Dauskardt et al. (1990) suggested that the scaling properties of the fracture surface may depend on
the fracture mechanism and/or the range of length scales considered. Ponson et al. (2006) characterized the roughness
scaling in terms of two exponents, one for the roughness in the direction of crack propagation and the other for the
roughness parallel to the crack front. Bonamy et al. (2006) (see also Bonamy and Bouchaud, 2011) argued that there are two
roughness regimes, one pertaining to length scales smaller than the fracture process zone and the other to length scales
larger than the fracture process zone, with each regime characterized by different values of scaling exponents. More
recently, Bouchbinder et al. (2006), Vernède et al. (submitted for publication), Ponson et al. (2013) have stressed the
importance, particularly for ductile fracture, of considering the full fracture surface statistics, not just the correlation
function. The full roughness statistics of the calculated ductile fracture surfaces in Ponson et al. (2013) were found to vary
with the fracture parameters.

A variety of models have been introduced aimed at understanding and simulating the scaling characteristics of fracture
surfaces, e.g. Ramanathan et al. (1997), Dauskardt et al. (1990), Bouchbinder et al. (2004), Afek et al. (2005), but these have
only focused on the value of the roughness exponent and do not provide a basis for calculating crack growth resistance as
well as roughness. Here, as in Needleman et al. (2012), Ponson et al. (2013, submitted for publication), we report on 3D finite
deformation calculations of ductile crack growth under small scale yielding conditions with imposed monotonically
increasing mode I remote loading. The analyses are based on a constitutive framework for a progressively cavitating ductile
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