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a b s t r a c t

We propose a theoretical scheme to enhance the fidelity of population transfer in a Josephson three-level
atom by optimizing the level anharmonicity. Without the leakage effect, the ideal population transfer can
be performed via Raman adiabatic passage. In the general case, we consider the dependence of transfer
fidelity on the leakage error, and then present an effective way to implement the high-fidelity population
transfer using the optimized level structure. The scheme could offer a potential route towards the robust
population transfer with artificial Josephson atoms experimentally.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Josephson quantum circuits acting as artificial atoms possess
many distinctive advantages to explore a variety of physical phe-
nomena and laws [1–5]. Compared with a two-level atom, the three-
level one has more degrees of freedom that can be controlled
precisely [6]. Through adjusting external parameters, quantum
coherent operations on the Josephson three-level atoms (TLAs) have
been studied both experimentally and theoretically [7–11]. As a
crucial issue in quantum state engineering, population transfer has
attracted attention increasingly during the past years [12–16], and
some novel strategies have been put forward to transfer populations
with the TLAs [17–21]. Very recently, adopting the method of
stimulated Raman adiabatic passage (STIRAP) [22,23], Falci et al.
analyzed a Λ-type system in Cooper-pair box (CPB) circuit to study
the population transfer [24].

Generally, owing to the effects of the external environment and
intrinsic property [25,26], the high-fidelity population transfer
with the superconducting circuits can be achieved hardly. How to
enhance the fidelity is thus highly desirable to implement the
perfect quantum manipulations. Utilizing the optimal control
techniques as much as possible is a robust approach to improve
the population transfer [27,28]. Alternatively, during the dynami-
cal evolutions of quantum states, the intrinsic leakage caused by
the external fields may be a noteworthy error source [29–31],
which is associated with the level anharmonicity closely [32].
Thus, it is necessary to optimize the level anharmonicity to
enhance the transfer fidelity.

In this paper, we theoretically present a feasible scheme to
enhance the fidelity of population transfer in a CPB circuit by
optimizing the level anharmonicity. Without the effect of leakage
error, the Λ-type interaction can be obtained between the chosen
TLA and the microwave pulses, by which we realize the ideal
population transfer via the STIRAP. Due to the impact of leakage
effect, the reduction of transfer fidelity is determined greatly by
the level harmonicity. By choosing the optimized level anharmo-
nicity, the quantum leakage can be suppressed effectively, and
thereby the high-fidelity population transfer can be implemented
with the available parameters. So, the proposal provides a promis-
ing approach to improve the population transfer by optimizing the
intrinsic level structure.

The paper is organized as follows. In Section 2, we address an
artificial TLA of a CPB circuit. In Section 3, the ideal population transfer
is shown via the STIRAP. We present the high-fidelity population
transfer with the optimized level anharmonicity in Section 4. Finally,
discussion and conclusion are drawn in Section 5.

2. A TLA of a CPB circuit

As shown in Fig. 1(a), the CPB device under consideration
includes a box with excess number n of Cooper-pairs. The box is
connected to a segment of a superconducting loop via two
Josephson junctions (with the identical Josephson couplings EJ
and capacitances CJ). By a magnetic flux Φe that threads the loop,
the effective Josephson energy can be tuned externally. The
voltage sources Vd and ~V k are applied to the box through a gate
capacitance Cg, in which the static voltage Vd modulates the
system levels by offsetting gate charges, and ac ones ~V k (k¼1, 2)
behave as classical microwaves to induce the level transitions
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[10,33], as mentioned below. In the charge-phase regime [34], the
system characteristic parameters satisfy ΔbEc � EJbkBT , where
the energy gap Δ is large enough to prohibit the quasiparticle
tunneling, Ec denotes the charging energy, having the same order
of EJ, and kBT is the thermal excitation.

In the absence of the external drivings ~V k, the static Hamilto-
nian of the CPB is described by H0 ¼ Ecðn�ndÞ2�EJ cos θ. The
charging energy scale is Ec ¼ 2e2=Ct , with Ct ¼ ðCgþ2CJÞ being
the total capacitance of the box, and nd ¼ CgVd=2e stands for the
polarized gate charges. The tunable Josephson energy reads
EJ ¼ 2EJ cos ðφ=2Þ, in which φ¼ 2πΦe=Φ0 represents the total phase
difference, and Φ0 ¼ h=2e indicates the flux quantum. The average
phase difference θ of the two junctions is canonically conjugate to
n, namely, ½θ;n� ¼ i. Within the basis of Cooper-pair number state
fjn〉g, the above Hamiltonian becomes

H0 ¼∑
n
½Ecðn�ndÞ2jn〉〈nj�

EJ

2
ð n〉〈nþ1 þH:c:Þ�:

���� ð1Þ

Given that EJ and Ec meet the general condition of EJ ¼ βEc ,
where β acts as the system characteristic variable and is relevant to
the eigenlevels, the charging energy is Ec ¼ 14:18 GHz [34].
According to Eq. (1), the first four levels Ej (j¼1, 2, 3 and 4) of
H0 with the chosen β¼ 1:1 are given in Fig. 1(b), which are
dependent on nd. We select the lowest three levels from Ej. It is
clear that the third level and the fourth one are close to each other
at nd ¼ 0:5. To obtain an effective TLA, we deal with the first three
levels at bias point nd ¼ 0:3. The corresponding level states jsr〉 can
be expanded in terms of Cooper-pair states jn〉, i.e., jsr〉¼∑ncrnjn〉,
with crn being superposition coefficients, r¼1, 2 and 3.

3. Ideal population transfer via STIRAP

For the selected three-level structure, as depicted in Fig. 2(a),
two microwave pulses ~V k are applied to resonantly drive the level
transitions between jsk〉 and js3〉, k¼1, 2. The ac gate voltages have
the forms ~V k ¼ VkðtÞ cos ðωktÞ, where Vk are small and time-
dependent amplitudes, and ωk are ac frequencies that are reso-
nantly matched with the transition frequencies ω3k ¼ ðE3�EkÞ=ℏ.
Since the gate pulses are diagonally coupled to the charge states,
the interaction Hamiltonians between the microwave fields and
the CPB system are expressed as [35]

Hks ¼ �2Ec ~nk∑
n
ðn�ndÞjn〉〈nj; ð2Þ

where ~nk ¼ nkðtÞ cos ðωktÞ, with nkðtÞ ¼ CgVkðtÞ=2e being the
reduced microwave amplitudes. The fast oscillating terms such

as ~n2
k have been ignored in the rotating wave approximation

(RWA). Under the classical microwave radiations, the matrix
elements describing the transitions between jsk〉 and js3〉 are
tk3 ¼ 〈skjHksjs3〉¼ �2Ec ~nkOk3; ð3Þ
where Ok3 ¼∑nðn�ndÞcnknc3n are the wavefunction overlap
between jsk〉 and js3〉 [10]. As a result, the relevant Rabi frequencies
are Ωk3 ¼ nkEcjOk3j=ℏ in the RWA.

In the interaction picture, the effective Hamiltonian of the Λ-
type interaction between the TLA and the microwave pulses is
given by

Hð1Þ
eff ¼ ℏðΩ13js1〉〈s3jþΩ23js2〉〈s3jÞþH:c:; ð4Þ

where Ω13 and Ω23 are dependent on the tunable microwave
amplitudes n1ðtÞ and n2ðtÞ, respectively. The dynamical evolution
of an arbitrary state ψ is governed by the Schrödinger equation
iℏ _ψ ¼Hð1Þ

eff ψ , where ψ ¼∑rcrjsr〉, with cr being the superposition
coefficients. Within the basis of fjsr〉g, the above equation can be
rewritten as the matrix form

i
d
dt

c1
c2
c3

2
64

3
75¼

0 0 Ω13

0 0 Ω23

Ωn

13 Ωn

23 0

2
64

3
75

c1
c2
c3

2
64

3
75: ð5Þ

Now consider n1 and n2 as Gaussian functions of time [17],
n1 ¼ 0:06e�ðt� τ1Þ2=τ2 and n2 ¼ 0:03e�ðt� τ2Þ2=τ2 , where 0.06 and 0.03
are the maximum amplitudes of pulses, τ1 ¼ 115 ns, τ2 ¼ 75 ns,
and τ¼ 35 ns are the pulse-related parameters, respectively. At the
working point nd ¼ 0:3, we numerically obtain O13 ¼ �0:132 and
O23 ¼ 0:387. Thus the Rabi frequencies Ωk3 are demonstrated in
Fig. 2(b). Assume that the system is initially in js1〉, we get the state
evolutions by solving Eq. (5). As plotted in Fig. 2(c), the population
is transferred from the initial js1〉 to the target state js2〉 through
the intermediate one js3〉 nearly. During the transfer process, the
applied pulses are required to perform the adiabatic operations.
With the effective Rabi frequencies Ω13 ¼ 0:11e�ðt� τ1Þ2=τ2 GHz and
Ω23 ¼ 0:16e�ðt� τ2Þ2=τ2 GHz, we have

R tf
0 Ω13 dt ¼ 6:97 and

R tf
0 Ω23 dt

¼ 10:2 (tf ¼ 200 ns), which approximately meet the adiabatic
conditions. Meanwhile, a sequence of two partially overlapping
pulses is applied in counterintuitive order: first ~V 2 and then ~V 1,
the relevant Rabi frequencies Ω13 and Ω23 traverse the closed-loop
in real-time space. Therefore, the coherent quantum operation is
just referred to as the STIRAP [22,23].

The present pulse parameters are chosen for two reasons. First, to
ignore the pulse-induced level fluctuations effectively, the maximum
pulse amplitudes (0.06 and 0.03), representing the pulses induced

Fig. 1. (a) Schematic diagram of the considered CPB circuit and (b) the first four eigenlevels Ej of the static CPB versus nd for the selected β¼ 1:1, energies are given in units of Ec.

Z.-B. Feng, M. Li / Optics Communications 319 (2014) 56–60 57



Download	English	Version:

https://daneshyari.com/en/article/7931336

Download	Persian	Version:

https://daneshyari.com/article/7931336

Daneshyari.com

https://daneshyari.com/en/article/7931336
https://daneshyari.com/article/7931336
https://daneshyari.com/

