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a b s t r a c t

A numerical model formulation of the higher order flow theory (rate-independent) by
Fleck and Willis [2009. A mathematical basis for strain-gradient plasticity theory – part II:
tensorial plastic multiplier. Journal of the Mechanics and Physics of Solids 57, 1045-1057.],
that allows for elastic–plastic loading/unloading and the interaction of multiple plastic
zones, is proposed. The predicted model response is compared to the corresponding rate-
dependent version of visco-plastic origin, and coinciding results are obtained in the limit
of small strain-rate sensitivity. First, (i) the evolution of a single plastic zone is analyzed
to illustrate the agreement with earlier published results, whereafter examples of
(ii) multiple plastic zone interaction, and (iii) elastic–plastic loading/unloading are
presented. Here, the simple shear problem of an infinite slab constrained between rigid
plates is considered, and the effect of strain gradients, strain hardening and rate sensitivity
is brought out. For clarity of results, a 1D model is constructed following a procedure
suitable for generalization to 2D and 3D.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Experimental observations of additional hardening (e.g. Xiang and Vlassak, 2006) and increased yield resistance (e.g.
Fleck et al., 1994; Swadener et al., 2002) at the micron scale have led to a vast amount of theoretical literature seeking to
model such effects. It has been recognized that strain gradients are the reason for the size effects observed, and a physical
explanation is achieved by the concept of Geometrically Necessary Dislocations (GND's), which affects the plastic behavior,
in addition to the so-called Statistically Stored Dislocations (SSD). A classical example is curvature resulting from bending in
the plastic regime, where GND's offer a simple explanation for the material compatibility. The GND density can be related to
the lattice curvature, and it is known to provide macroscopic strengthening (Ashby, 1970; Russel and Ashby, 1970).

In spite of experimental evidence and insight into the mechanisms involved, it has not been a simple matter to obtain a
sound extension to the classical J2 flow theory of plasticity that incorporates a dependence on plastic strain gradients (stated by
Hutchinson, 2012). Nevertheless, a number of phenomenological strain gradient enhanced flow theories involving higher
order stresses that are work-conjugate to the strain gradients have been proposed (Fleck and Hutchinson, 1997, 2001;
Gudmundson, 2004; Gurtin and Anand, 2005, 2009; Fleck and Willis, 2009; Niordson and Hutchinson, 2011), all suffering
from individual drawbacks that arise with the difficulty in accounting for strain gradients in a consistent manner, e.g., the
widely used Fleck–Hutchinson theory (2001) does not guarantee positive plastic dissipation for specific straining histories
(Gurtin and Anand, 2009), whereas the theory of Gudmundson (2004), Gurtin and Anand (2005) and Fleck andWillis (2009)
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predicts discontinuous changes in the higher order stresses upon certain infinitesimal load changes. It is emphasized that
the present work does not intend to clarify these fundamental issues. However, a recent discussion can be found in
Hutchinson (2012).

The class of higher order flow theories including Aifantis (1984), Muhlhaus and Aifantis (1991), Fleck and Hutchinson
(1997) and Fleck and Hutchinson (2001) has the advantage that the numerical formulation is straight forward, thus being
well-suited for numerical solution techniques, such as the finite element method. This advantage has contributed to a wide
use. On the other hand, significant challenges are encountered for the rate-independent flow theory by Gudmundson
(2004), Gurtin and Anand (2005) and Fleck and Willis (2009). The problems in this class of theories involve the definition of
yielding in relation to the numerical implementation, and the treatment of the evolution and interaction of multiple plastic
zones. The objective of this work is to present and demonstrate a novel numerical formulation of the higher order flow
theory (rate-independent) by Fleck andWillis (2009), that allows for elastic–plastic loading/unloading and the interaction of
multiple plastic zones. Here, the aim is threefold: (i) to analyze the evolution of a single plastic zone and ensure agreement
with earlier published results, (ii) to validate the predictability in terms of the evolution and interaction of multiple plastic
zones, and (iii) to ensure correct treatment of elastic–plastic loading/unloading. Throughout, the model response is
compared to the corresponding rate-dependent visco-plastic version of the Fleck–Willis theory, which acts as an ideal basis
for comparison, and fortunately lends itself nicely to numerical implementation (Niordson and Legarth, 2010; Niordson and
Hutchinson, 2011; Danas et al., 2012; Dahlberg and Faleskog, 2013). To facilitate easy management of multiple plastic zones
a layered infinite material slab, constrained between rigid platens and loaded in simple shear, is considered. For clarity of
results, a 1D model is constructed using a procedure that leans on the formulation of the corresponding rate-dependent
theory combined with classical image analysis, which is suitable for generalization to 2D and 3D. The paper is structured as
follows. The theoretical basis of the generalized flow theory (rate-independent) by Fleck and Willis (2009) and its rate-
dependent counterpart is outlined in Section 2. Here, focus is on the variational principles to be used in the numerical
formulation and the modeling procedure which is presented in Section 3. A 1D shear model is developed in Section 4, and
predicted results are given in Section 5. The work is concluded in Section 6.

2. Strain gradient theory: rate-independent and rate-dependent

The present work builds upon a small strain theory for strain gradient plasticity developed by Gudmundson (2004),
Gurtin and Anand (2005) and Fleck and Willis (2009). A compact overview of the generalized flow theory (rate-
independent) and the corresponding visco-plastic formulation (rate-dependent) is given below. Throughout, Einstein's
summation rule is utilized in the tensor equations and ðÞ;i denotes partial differentiation with respect to the spatial
coordinate xi.

2.1. Variational principles and constitutive relations

Employing a small strain formulation, the total strain rate is determined from the gradients of the displacement rates;
_ɛ ij ¼ ð _ui;jþ _uj;iÞ=2, and decomposes into an elastic part, _ɛeij, and a plastic part, _ɛpij, so that; _ɛ ij ¼ _ɛeijþ _ɛpij. For a gradient enhanced
material, involving higher order stresses, the principle of virtual work reads (Gudmundson, 2004)Z

V
ðsijδɛijþðqij�sijÞδɛpijþτijkδɛ

p
ij;kÞ dV ¼

Z
S
ðTiδuiþtijδɛ

p
ijÞ dS: ð1Þ

Here, sij is the symmetric Cauchy stress tensor and sij ¼ sij�δijskk=3 its deviatoric part. In addition to conventional stresses,
the principle of virtual work incorporates the so-called micro-stress tensor, qij (work-conjugate to the plastic strain, ɛpij), and
the higher order stress tensor, τijk (work-conjugate to plastic strain gradients, ɛpij;k). The right-hand side of Eq. (1) thereby
includes both conventional tractions, Ti ¼ sijnj, and higher order terms, tij ¼ τijknk, with nk denoting the outward normal to
the surface S.

The mechanisms associated with dislocation movement and/or storage of GND's (Ashby, 1970; Gurtin, 2002; Ohno and
Okumara, 2007) have been incorporated into the current higher order theory by assuming the micro-stress to have a
dissipative part only; qij ¼ qDij , while the higher order stresses decompose into a dissipative part, τDijk, and an energetic part,
τEijk, such that τijk ¼ τDijkþτEijk. Thus, an assumption for the free energy can be introduced according to the isotropic expression

Ψ ¼ 1
2 ɛij�ɛpij

� �
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whereby the conventional stresses is given through the elastic relationship; sij ¼ ∂Ψ=∂ɛeij ¼Lijklðɛkl�ɛpklÞ, while the energetic
higher order stresses are τEijkl ¼ ∂Ψ=∂ɛpij;k ¼ GðLEÞ2ɛpij;k. Here, Lijkl is the isotropic elastic stiffness tensor, G is the elastic shear
modulus and LE is an isotropic energetic constitutive length parameter. Although, the energetic length parameter is taken to
be zero throughout this study, the numerical framework is developed to handle energetic contributions.

Introducing a quadratic form of the gradient enhanced effective plastic strain rate, given by
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