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a b s t r a c t

The plastic deformation of metals is the result of the motion and interaction of
dislocations, line defects of the crystalline structure. Continuum models of plasticity,
however, remain largely phenomenological to date, usually do not consider dislocation
motion, and fail when materials behavior becomes size dependent. In this work we
present a novel plasticity theory based on systematic physical averages of the kinematics
and dynamics of dislocation systems. We demonstrate that this theory can predict
microstructure evolution and size effects in accordance with experiments and discrete
dislocation simulations. The theory is based on only four internal variables per slip system
and features physical boundary conditions, dislocation pile ups, dislocation curvature,
dislocation multiplication and dislocation loss. The presented theory therefore marks a
major step towards a physically based theory of crystal plasticity.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Since the bronze age men use the relative ease of plastically deforming metallic materials to produce tools and structures
of ever growing variety in shape and function. The plastic properties of metals and of crystalline materials in general are
largely controlled by the presence and characteristics of dislocations. Dislocations are line defects of the crystal lattice which
may move when subjected to stresses, thereby introducing a permanent shear of the lattice without altering the lattice
structure. Despite the enormous economic importance of metal plasticity and a significant amount of knowledge regarding
the characteristics of individual dislocations and their interactions, no physical continuum theory of plasticity has yet
emerged (Kröner, 2001). At first glance this appears astonishing since key issues in plasticity like the phenomenon of strain
hardening can directly be related to the multiplication and interactions of dislocations and ‘physically informed’ models
have been formulated which describe strain hardening in terms of the evolution of dislocation densities, see e.g. Kocks and
Mecking (2003), Devincre et al. (2008). However, even the most sophisticated models rely on local laws which relate the
evolution of dislocation density measures to the rate of plastic deformation. This engenders a conceptual paradox: even
though plastic flow occurs by the motion of dislocations, dislocation transport is not captured by these models. This
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conceptual problem is inconsequential in traditional engineering applications concerned with large polycrystalline
structures, where each volume element contains many grains and local constitutive laws are usually viable since grain
boundaries constrain dislocation transport. In fact, the common approach in engineering plasticity has been to dispose
altogether of dislocation considerations and to rely on phenomenological parameterization of local constitutive laws by
fitting model parameters to the results of mechanical testing.

In small scale structures, however, local constitutive laws have been challenged since the 1990's by observations of size
dependent plastic behavior, see e.g. Fleck et al. (1994), Arzt (1998), Volkert and Kraft (2001). These observations stimulated
many efforts to make phenomenological plasticity models size dependent by introducing internal length scales, mostly by
adding gradients of the plastic strain into traditional constitutive frameworks (Fleck and Hutchinson, 1993; Nix and Gao,
1998; Gurtin, 2002). However, recent small scale experiments display size effects also in deformation geometries where
strain gradients are absent, as in the uniaxial compression of micro pillars (Uchic et al., 2004; Volkert and Lilleodden, 2006).
While discrete dislocation simulations can correctly describe such size effects as well as those stemming from strain
gradients (Zhou et al., 2010; Senger et al., 2008; von Blanckenhagen et al., 2004), current continuum theories cannot. This
emphasizes the need for a physical theory of plasticity to overcome the shortcomings of phenomenological modelling by
direct consideration of the kinematics of dislocation systems.

For the formulation of a statistical continuum theory of dislocations one important challenge already appears at the most
fundamental level, namely at representing the dislocation arrangement and kinematics by continuous field variables. This
difficulty stems from the nature of dislocations as curved and connected lines: as line segments of different orientation
move into different directions, maintaining connectivity requires continuous changes in line length. The resulting kinematic
problems have recently been overcome by Hochrainer et al. (2007) through the use of a higher dimensional configuration
space containing variables that characterize the dislocation line direction. While this approach is satisfying from a
theoretical point of view, numerical solution of the obtained equations is difficult and computationally expensive owing to
the necessity of discretizing the continuous orientation space at each spatial point (Sandfeld et al., 2010). Low resolution of
the orientation space, e.g. by considering only ‘screw’ orientations parallel and ‘edge’ orientations orthogonal to the Burgers
vector, as in Arsenlis et al. (2004) or Zaiser and Hochrainer (2006), leads to point particle-like kinematics which have to be
patched up with sophisticated rules to account for changes in line length and in dislocation character during dislocation
motion. High resolution, on the other hand, results in simulations that are expensive both in terms of storage space and
computation time. Here we show that these problems can be overcome in a systematic manner by considering multipole
expansions of the orientation dependence of the density functions. In the simplest case, this yields a closed set of evolution
equations for the total dislocation density, the dislocation curvature density and the components of the dislocation density
tensor (Kröner–Nye tensor). These equations define a physical theory of plasticity that accounts for transport and storage of
dislocations, dislocation multiplication and dislocation loss and that enables the formulation of physically based boundary
conditions in terms of dislocation fluxes. In other words, the equations constitute the basis for a continuum dislocation
dynamics (CDD) field theory.

2. Continuum dislocation dynamics (CDD)

In single crystals, plastic slip occurs in a discrete set of slip systems characterized by slip direction m and slip plane
normal n. The shear displacement produced by the dislocation as it moves in its slip plane is given by the Burgers vector
b¼ bm. Locally, the direction of a dislocation line is characterized by its tangent l. There are two classical dislocation density
measures: the total dislocation density ρt (line length per unit volume) and the dislocation density tensor α. Besides its
continuum definition as the curl of the plastic distortion tensor βpl (Kröner, 1958), α can be obtained by averaging as follows:
for dislocations of one slip system (sharing the same Burgers vector b) one sums up the vectors t connecting the point of
entry and exit of each dislocation crossing a volume element Ω with volume jΩj to obtain the density vector κ¼∑t=jΩj.
Combining this with the Burgers vector into a tensor gives the dislocation density tensor of the slip system, α¼ κ � b. The
overall dislocation density tensor derives by summing the tensors from the slip systems. As averaged objects, however, these
dislocation density measures cannot be systematically evolved since essential kinematic information is missing.

A kinematically closed theory of plasticity can be built upon a higher dimensional analogue of the dislocation density
tensor: the second order dislocation density tensor αII (Hochrainer et al., 2007) (SODT). The basic idea is to assign to each
point of the dislocation line the angle φ which the local tangent l forms with the Burgers vector b to define a ‘lifted’ curve in
an extended configuration space that contains the angle as an independent parameter. The tangent vectors to these lifted
curves contain both the local spatial line direction and the curvature given by the change of the angle φ along the curve.
Averaging these second order tangent vectors in much the same way as described above with regard to the classical
dislocation density tensor yields αII.

To formulate the new equations we introduce a coordinate system on a slip system such that the slip plane is the 1–2
plane and the Burgers vector points in 1-direction: b¼ ðb;0;0Þ. Points in the plane are denoted by p while a point in the
higher dimensional configuration space is given by P ¼ ðp;φÞ. The tensor αII is uniquely defined by two density functions: the
dislocation density ρðp;φÞ, which measures at p the area density of dislocations with line direction lðφÞ threading a
perpendicular area element, and the curvature density qðp;φÞ, which characterizes the variation of direction along the
dislocation lines and relates to the local dislocation line curvature kðp;φÞ by qðp;φÞ ¼ ρðp;φÞkðp;φÞ. The corresponding
evolution equations are summarized in Appendix A1.
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