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In optical fiber transmission systems, the split-step Fourier method (SSFM) has been widely used in
digital back propagation (DBP) to compensate fiber nonlinearity. In this paper, by using the Lagrange's
Integral Mean Value Theorem (LIMVT), we derive an analytical expression to calculate the optimal value
of the nonlinearity calculation position (NLCP) for different systems and we propose an integral SSFM
(I-SSFM) based on the expression. The I-SSFM can be performed more accurately and efficiently without
parameter optimization. Simulations of various transmission links show that the I-SSFM outperforms the
conventional asymmetric SSFM (A-SSFM) and the symmetric SSFM (S-SSFM) significantly, especially
when we employ less amount of steps to ensure computation efficiency. The computation effort of the
I-SSFM reaches as low as 50% of that of the S-SSFM.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, real-time 40 Gb/s [1] and 100 Gb/s [2,3] coherent
optical transmission systems have been demonstrated. To achieve
even higher bit-rate and spectral efficiency, multilevel modulation
formats such as 16-level quadrature amplitude modulation (16QAM)
and 64QAM are to be employed. However, systems employing higher-
level modulation formats require higher SNR and hence higher launch
powers and this can significantly reduce the possible transmission
distance and capacity due to fiber nonlinear impairments [4,5].
Therefore, mitigation or compensation of fiber nonlinearity becomes
significant and has been widely studied, among which the digital
signal processing (DSP) is a promising solution.

Of all the approaches employing DSP techniques to suppress
the fiber nonlinearity, the digital back propagation (DBP) [6-9]
shows the best performance and has become the benchmark for
fiber nonlinearity compensation. By employing the split-step
Fourier method (SSFM), DBP can solve the nonlinear Schrodinger
equation (NLSE) inversely and hence the optical signals can be
reconstructed at the receiver side.

Generally, there are 2 ways to realize the SSFM, i.e., the
asymmetric SSFM (A-SSFM) and the symmetric SSFM (S-SSFM).
The A-SSFM performs one linear and then one nonlinear operation
sequentially in each step and is not iterative. But to enhance the
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calculation accuracy, the S-SSFM calculates half a linear and one
nonlinear followed by the rest half a linear operation sequentially
in each step and often utilizes two additional iterations [6,11]. The
non-iterative A-SSFM saves computation efforts, but the iterative
S-SSFM shows a better performance at a cost of higher imple-
mentation complexity.

To improve the computation efficiency without significant
performance degradation, a modified non-iterative SSFM (M-SSFM)
for DBP was proposed in [10]. This proposal improves the perfor-
mance of DBP by shifting the nonlinearity calculation position
(NLCP) without additional iterations [10]. The M-SSFM outperforms
the A-SSFM and is less complex than the S-SSFM. However, to the
best of our knowledge, no analytical expression for the NLCP has
been reported, which means that it is difficult to determine the
optimal value of NLCP in actual systems with various parameters,
like the dispersion and launch power. In [10] the optimum of NLCP
is obtained by enumerating and testing different values of NLCP.
Still, the M-SSFM is often combined with parameter optimization
[10], bringing extra work in obtaining the optimized parameters for
different systems.

In this paper, we reveal why better performance can be achieved
by shifting the NLCP and we derive an analytical expression to
calculate the optimal value of NLCP. This expression is derived with
the Lagrange's Integral Mean Value Theorem (LIMVT) and is
applicable to systems with different parameters, like the dispersion,
transmission length and launch power. And based on the expres-
sion, we propose an integral SSFM (I-SSFM). Unlike the M-SSFM, the
resulting expression allows us to obtain the optimum of NLCP


www.sciencedirect.com/science/journal/00304018
www.elsevier.com/locate/optcom
http://dx.doi.org/10.1016/j.optcom.2013.09.015
http://dx.doi.org/10.1016/j.optcom.2013.09.015
http://dx.doi.org/10.1016/j.optcom.2013.09.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2013.09.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2013.09.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2013.09.015&domain=pdf
mailto:yusong@bupt.edu.cn
http://dx.doi.org/10.1016/j.optcom.2013.09.015

J. Yang et al. / Optics Communications 312 (2014) 80-84 81

accurately and the I-SSFM can be performed without optimizing the
parameters, avoiding the extra work brought by parameter optimi-
zation. Through simulations of transmission links of EDFA systems
with various parameters, we investigate the performance of the
[-SSFM employing the derived expression and the applicability of
our proposal for different systems.

2. Theory
2.1. Back propagation theory

Ignoring the higher order linear and nonlinear terms, the NLSE
for a single channel optical system is [11]
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where A is the optical field envelope. D and N are the linear and
nonlinear operators respectively and defined as
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where a is the fiber attenuation, /%, is the group velocity and y is
the fiber nonlinear coefficient.

The DBP attempts to back propagate the received signals in a
virtual fiber by taking the inverse spatial evolution of Eq. (1)
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here D '=—D and N ' =—N are the inverse operators. The
parameters used in Eq. (4) are opposite to the fiber parameters
in sign, i.e., (—a, —f,, —y). Fig. 1 shows the process of the forward
propagation (FP) and the digital back propagation (DBP).

We often numerically solve the NLSE by employing the most
commonly used S-SSFM
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where h is the step size. The integral for N(s) is generally
approximated to Eq. (6) by the trapezoidal rule and two iterations
are often used [6,11]. The accuracy of the iterative S-SSFM
improves with the increase of the number of iterations or the
increase of the number of steps per span, both increasing the
computation efforts.

2.2. The calculation of NLCP

Our algorithm is based on the assumption that the optical
signal power evolves exponentially through the propagation in the
fiber. So first it is necessary to investigate how the signal power
evolves through transmission in systems both with and without
dispersion in the FP.
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First let us consider the fiber without dispersion. Provided that
no dispersion exists in the fiber, then there is only nonlinear effect.
As the fiber nonlinearity essentially only changes the phase of
every symbol, it does not affect the signal's power. So the optical
signal power theoretically follows the exponential decaying under
this scenario.

But for systems with dispersion, there is inter-symbol-
interference (ISI) and the optical signal power may not simply
decay exponentially. To investigate how the signal power evolves
when both dispersion and nonlinear effect exist, we first divide
the constellation into 3 circles (C1, C2 and C3) according to the
power of the modulated symbols as shown in Fig. 2. Before
transmission, symbols belonging to the same circle have the same
power. Then we simulate a single-channel single-polarization
16QAM transmission system with a symbol rate of 28 Gbaud
(112 Gbps). We consider the standard single mode fiber (SSMF)
with attenuation a=0.2dB/km and nonlinearity coefficient
y=132W ' km~'. The input power is fixed at —3 dBm and
transmission length is fixed at 8 x 80 km. The noise figure (NF)
of the EDFA is 4db and 16,384 symbols are transmitted. Two
dispersion coefficients of D=4.4 ps/nm/km and D=16 ps/nm/km
are employed. We record the power of each symbol at every step
in every loop. Then we calculate the average power of the symbols
belonging to the same circle at every step in every loop. The result
is shown in Fig. 3(a) and (b). We can see that from the second loop
on, the average power of the 3 circles all approximate exponential
decaying for both systems with D=4.4 and D=16.

Though we conduct simulations with only several typical
parameters, to some extent it validates our assumption of expo-
nential decaying in the FP is acceptable from the viewpoint of
simulation. As the DBP is essentially a reverse calculation of the FP,
the signal power in DBP should also evolve exponentially. Then
optical signal power in each span in the FP and DBP should evolve
approximately as the exponential curves shown in Fig. 4.

Now we assume that the S-SSFM is performed once per span
when using the DBP, so we will have that the step size h = lpqn.
Then we calculate half a linear, one nonlinear and then half a
linear operation sequentially. For the nonlinear calculation, we
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Fig. 2. The division of 3 circles for the constellation.
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Fig. 1. (a) Forward propagation (FP) process through the fiber. (b) Digital back propagation (DBP) propagation through the virtual fiber.
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