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a b s t r a c t

We propose a scheme for generation of the W state and the Greenberger–Horn–Zeilinger (GHZ) state of
atomic ensembles. The scheme is based on the dynamics of a single control atom and atomic ensembles
interacting with a nonresonant cavity mode. By choosing the appropriate parameters, the effective
Hamiltonian describing the interaction between the control atom and the atomic modes shows complete
analogy with the Jaynes–Cummings Hamiltonian. The required time for preparing the W state (GHZ
state) keeps unchanged (increases linearly) with the increase of the number of atomic ensembles. The
effects of dissipation and the detuning between the atomic modes and the control atom on the prepared
states are analyzed by numerical simulation.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recently, much interest has been paid to the multipartite entan-
glement. For multipartite systems, there are more peculiar properties
than the bipartite ones because they exhibit the contradiction
between local hidden variable theories and quantum mechanics
even for nonstatistical predictions, as opposed to the statistical ones
for the Einstei–Podolsky–Rosen (EPR) states [1]. Moreover, multi-
partite entanglements are important physical resources for quantum
information processing, such as quantum cryptography [2], quantum
teleportation [3] and quantum dense coding [4]. The typical multi-
particle entangled states are the W state [5] and the GHZ state [5,6],
which have been demonstrated to be two inequivalent classes of
entangled states. As we know, theW state is robust against qubit loss
while the GHZ state is inequivalent to the W state in the sense that it
will be reduced to the maximally mixed state when one of the qubits
is decohered or to a product state when one of the qubits is
measured in the logical basis.

In recent years, many schemes for generation of the W state
and the GHZ state have been proposed [7–12]. The physical
systems utilized to generate entanglement include superconduct-
ing circuits [13–16], linear optical system [17], cavity quantum
electrodynamics (QED) [18], trapped ions [19], and quantum
dot [20]. Among them, the cavity QED is well developed and
regarded as an ideal candidate for quantum communication and
quantum state engineering [21,22]. Compared with those schemes

that use a single particle as a qubit, the schemes proposed by Lukin
et al. [23], Xue and Guo [25], Duan [24], and Han et al. [26] use an
atomic ensemble with a large number of identical atoms as the basic
system. There are several advantages by using an atomic ensemble as
a single qubit. First, the manipulation of the atomic ensemble is
normally easier than the coherent control of a single atom for that
the laser applied to the atomic ensemble does not separately address
the individual atoms in the ensemble [27]. Second, the atomic
ensemble that contains a large number of identical atoms increases
the light–matter coupling strength, which scales with the square-
root of the number of the atoms involved in the ensemble. This
greatly reduces the operation time and thus suppresses the deco-
herence. Those advantages allow one to take a more positive view of
the atomic ensemble and regard it as an essential resource for many
ingenious applications such as subshot noise spectroscopy and atom
interferometry [28], secure cryptography protocols [29], and genera-
tion of squeezed states for atomic ensembles [30].

For the generation of entangled states of atomic ensembles, the
schemes in Refs. [23–26] are based on single-photon detection, thus
the success probabilities of getting the desired states are very small.
The scheme in Ref. [25] for preparing the W state and that in
Refs. [24,26] for preparing the GHZ state requires the operation time
polynomially and exponentially with the number of atomic ensem-
bles. Thus they are also sensitive to the photon loss. Recently, Zheng
[31] has found that the dynamics of an atomic systemwhich contains
a single control atom and an atomic ensemble can be described as an
effective Jaynes–Cummings model (JCM). In his proposal, the atomic
ensemble acts as the bosonic mode, and the single control atom and
the atomic ensemble are dispersively coupled to a cavity while the
control atom is also illuminated by a highly detuned auxiliary
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classical field. Stimulated by this idea, we present here a new scheme
to generate the W state and the GHZ state. The scheme has the
following advantages: (i) it does not depend on the photon detection,
which simplifies the experimental equipment. (ii) The high-fidelity
W state and GHZ state can be achieved even in the presence of the
decoherence arising from atomic spontaneous emission and photon
leakage. (iii) The required time for preparing the GHZ state increases
linearly with the number of atomic ensembles and that for the W
state is unchanged

2. Dynamical model of the atomic system

Let us first briefly describe the dynamical model of the system
under consideration. A single control atom and an atomic ensemble
which contain N identical atoms are trapped in a single-mode
cavity. The atomic level configuration and the corresponding
transitions are shown in Fig. 1. Each atom has an excited state je〉
and two ground states jf 〉 and jg〉. The atomic transition je〉2jg〉 of
the control atom (the atoms in the ensemble) is coupled to the
cavity with coupling coefficient gc (ge) with detuning Δg. Mean-
while, the atoms are driven by two classical fields with the Rabi
frequencies Ω1 and Ω2 and detunings Δ1 and Δ2. In the interaction
picture, the Hamiltonian describing the system is ðℏ¼ 1Þ
HI ¼ ðΩ1eiΔ1t jec〉〈f cjþΩ2eiΔ2t j f c〉〈ecjþgce

iΔg tajec〉〈gcjÞ

þ ∑
N

i ¼ 1
ðΩ1eiΔ1t jei〉〈f ijþΩ2eiΔ2t j f i〉〈eijþgee

iΔgtajei〉〈gijÞþH:c:;

ð1Þ
where a is the annihilation operator for the cavity mode. Under the
large detunings condition, i.e., Δ1;Δ2;Δg⪢gc; ge;Ω1;Ω2, the upper-
level je〉 can be adiabatically eliminated. Moreover, we set the
parameters Ω1 ¼Ω2 ¼Ω and Δ1 ¼Δ2 ¼Δ to eliminate the Stark
shift induced by the classical pulses. Furthermore, choose the
detunings appropriately so that the dominant Raman transition is
induced by the classical field Ω1 and the cavity mode a, while the
other Raman transitions are far off-resonant and can be neglected.

Then the Hamiltonian can be written as

H′
I ¼

g2c
Δg

aþajgc〉〈gcjþ ∑
N

i ¼ 1

g2e
Δg

aþ ajgi〉〈gij

þðλce� iδtaj f c〉〈gcjþ ∑
N

i ¼ 1
λ1e� iδtaj f i〉〈gijþH:c:Þ; ð2Þ

where δ¼Δg�Δ, λc ¼ ðgcΩ=2Þð1=Δgþ1=ΔÞ, and
λ1 ¼ ðgeΩ=2Þð1=Δgþ1=ΔÞ. In the case that δ⪢λ1; λc , the atoms
cannot exchange energy with the field. However, the atoms can
exchange energy with each other via the virtual excitation of field
mode. Then the Hamiltonian of Eq. (2) can be replaced by the
effective Hamiltonian

Heff ¼
λ2c
δ
aaþ j f c〉〈f cjþ

g2c
Δg

�λ2c
δ

 !
aþ ajgc〉〈gcj

þ ∑
N

i ¼ 1

λ21
δ
aaþ j f i〉〈f ijþ

g2e
Δg

�λ21
δ

 !
aþ ajgi〉〈gij

" #

þ ∑
N

l ¼ 1

λcλ1
δ

ðSþ
c S�

l þS�
c Sþ

l Þþ ∑
N

j;k ¼ 1

λ21
δ
Sþ
j S�

k ðjakÞ ð3Þ

where Sþ
i ¼ j f i〉〈gij and S�

i ¼ jgi〉〈f ij ði¼ c;1;2;…;NÞ. Since
½aþ a;Heff � ¼ 0, the photon number is conserved during the interac-
tion. If the cavity is initially in the vacuum state, it will remain in
this state and the effective Hamiltonian reduces to

H′
eff ¼

λ2c
δ
j f c〉〈f cjþ

λ21
δ

∑
N

j;k ¼ 1
Sþ
j S�

k þλcλ1
δ

∑
N

i ¼ 1
ðSþ

c S�
i þS�

c Sþ
i Þ: ð4Þ

Setting bþ ¼ ð1=
ffiffiffiffi
N

p
Þ∑N

i ¼ 1S
þ
i , b¼ ð1=

ffiffiffiffi
N

p
Þ∑N

i ¼ 1S
�
i ,

nb ¼∑N
i ¼ 1j f i〉〈f ij, then we have ½b; bþ � ¼ 1�ð2=NÞnb. Suppose that

the average number of atoms in the state jf 〉 is much smaller than the
total atomic number, i.e., nb⪡N, then b and bþ can be regarded as the
bosonic operators. In this case, the Hamiltonian can be rewritten as

H1 ¼ νSzcþɛbþbþμðSþ
c bþS�

c bþ Þ; ð5Þ
where Szc ¼ 1

2 ðj f c〉〈f cj�jgc〉〈gcjÞ, ν¼ λ2c=δ, ɛ¼Nλ21=δ,
μ¼

ffiffiffiffi
N

p
ðλcλ1Þ=δ, and we have discarded the constant energy λ2c=δ.

The Hamiltonian H1 shows complete analogy with the Jaynes–Cum-
mings Hamiltonian. Under the resonant condition

ν¼ ɛ; ð6Þ
the Hamiltonian describes the resonant coupling between the control
atom and the atomic mode and leads to the transitions

j f c〉j0〉e-e� iðɛtÞ=2½ cos ðμtÞj f c〉j0〉e� i sin ðμtÞjgc〉j1〉e�;
jgc〉j1〉e-e� iðɛtÞ=2½ cos ðμtÞjgc〉j1〉e� i sin ðμtÞj f c〉j0〉e�; ð7Þ
where jx〉e (x¼0,1) denotes the Fock state of the atomic ensemble,
with x¼0 denoting that all the atoms in the ensemble are in the state
jg〉, while x¼1 denoting that there is only one atom in the state jf 〉 and
the others in the state jg〉.

In order to validate the feasibility of the above theoretical
analysis, we perform a direct numerical simulation of the Schrö-
dinger equation with the full Hamiltonian in Eq. (1) and the
effective Hamiltonian in Eq. (5). To satisfy the resonant condition
ν¼ ɛ, we set the parameters ge ¼ g=

ffiffiffiffi
N

p
and gc ¼ g. We should

mention that the coupling coefficient between the atoms and the
cavity mode is dependent on the waist of the cavity and the
position of the atoms in the cavity. Hence, the relations ge ¼ g=

ffiffiffiffi
N

p

and gc ¼ g could be reachable. In the following simulation, we
calculate the temporal evolution of the system with the initial
state j f c〉j0〉e. We plot the time-dependent populations of the basic
states j f c〉j0〉e (P1) and jgc〉j1〉e (P2) governed by the full Hamilto-
nian in Eq. (1) (green lines in Fig. 2) and the effective Hamiltonian
in Eq. (5) (red lines in Fig. 2), where Ω¼ g, N¼ 104 and
(a) Δ¼ 11g, Δg ¼ 12g; (b) Δ¼ 49g, Δg ¼ 50g. We can see that the
effective and full dynamics exhibit excellent agreement when the

Fig. 1. A single control atom and an atomic ensemble which contain N identical
atoms are trapped in a single-mode cavity with different coupling coefficients.
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