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a b s t r a c t

This paper theoretically demonstrates that the Fourier spectra of an arbitrary nondiffractive optical field
and the corresponding coding noise do not overlap when the kinoform is used to encode the field.
Consequently, to generate the desired nondiffractive optical field with upper bound diffraction efficiency,
we remove the coding noise at the Fourier plane with a binary filter and apply inverse Fourier transform.
To illustrate our theoretical approach, we generate, for the first time, both numerically and experimen-
tally Parabolic optical fields with upper bound diffraction efficiency.

& 2013 Published by Elsevier B.V.

1. Introduction

Nondiffractive optical fields have attracted considerable atten-
tion because of their unique property, i.e., propagation invariance
over a finite distance [1–3]. They are used for example in the
generation of photonic nonlinear structures, periodic and quasi-
periodic intensity distributions, and vector optical fields [4–6].

Usually Phase holograms (PH) are used to generate complex optical
fields, because they possess high diffraction efficiency and are accu-
rately implemented using liquid–crystal (LC) spatial light modulator
(SLM) [7,8]. The existence of the upper bound diffraction efficiency
was first recognized by Wyrowski [9]. In this way, the generation of
nondiffractive optical fields with upper bound diffraction efficiency is
shown in [10–14]. In those cases, the phase of the transmittance of
the PH equals the phase of the desired nondiffractive optical field, i.e.,
the nondiffractive optical fields are encoded using their correspond-
ing kinoforms. Additionally, in the transmittance Fourier domain, the
spectrum of the encoded field is noise free. The generation of an
arbitrary nondiffractive Bessel beam using its phase modulation was
analytically and experimentally verified in [10]. Using numerical
results, in [11,12], the authors show that the class the periodic and
quasiperiodic nondiffractive fields composed by Q planes waves of

constant amplitudes and uniform phases can be generated employing
only the phase information [11,12]. Recently, the results [10–12] were
theoretically unified in [14]. On the other hand, experimental genera-
tion of Mathieu beams with upper bound diffraction efficiency is
addressed in [13]. Unfortunately, the results [13] were not analytically
justified. Using blazed phase computer-generated holograms (CGH),
the generation of nondiffractive Parabolic beams was addressed in
[15]. However, employing those phase holograms, the maximum
diffraction efficiency obtained into the 71 orders is 33.9% and they
do not satisfy the upper bound diffraction efficiency.

The main goal of this paper is to extend the previous results [10–
12,14] and consider the generation of an arbitrary nondiffractive
optical field with upper bound diffraction efficiency. To do that, we
theoretically prove that, in the kinoform Fourier spectrum, the spectra
of the nondiffractive field and coding noise do not overlap. This goal is
also motivated by the fact that nondiffractive fields also find applica-
tions in optical tweezers [16], where the diffraction efficiency plays
a key role [17]. As an experimental application of the proposed
approach, we demonstrate for the first time the generation of
nondiffractive Parabolic fields with upper bound diffraction efficiency.

2. Kinform Fourier spectrum of an arbitrary
nondiffractive field

This section focusses on the computation of the kinoform
Fourier spectrum of an arbitrary nondiffractive field. Our analyzes
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use cylindrical coordinates. We are interested in nondiffractive
optical fields sðr; θÞ expressed by means of Whittaker integral [18],

sðr; θÞ ¼
Z π

�π
AðφÞexp ½�ikr cos ðθ�φÞ� dφ; ð1Þ

which can be viewed as the inverse Fourier transform in cylind-
rical coordinates of Sðρ;φÞ ¼ AðφÞδð2πρ�kÞ, where k is the wave-
number, δð�Þ is the Dirac delta, and AðφÞ is an arbitrary complex
function. This means that the Fourier spectrum of the complex
field is an annular delta of radius k=2π, which is modulated by the
angular spectrum AðφÞ.

In addition, we assume that there exists a complete orthogonal
basis ψnðr; θÞ, for all n, such that any field defined in (1) is
expressed as a linear combination of ψnðr; θÞ,

sðr; θÞ ¼ ∑
1

n ¼ �1
anψnðr; θÞ; ð2Þ

where an, for all n, are complex coefficients. It is worth to mention that
the complete basis is not unique. Some examples of orthogonal bases
are Bessel fields [1], Elliptic fields [2], and Parabolic fields [3].1 For a
fixed field sðr; θÞ, we select ψnðr; θÞ, for all n, as Bessel fields, i.e.,
ψnðr; θÞ ¼ JnðkrÞexpðinθÞ, where Jnð�Þ is the Bessel function of order n.
For instance, the Jacobi–Anger identity establishes that a plane wave is
expressed by superposition of Bessel fields. Specifically, we have that
expðikyÞ ¼∑1

m ¼ �1JnðkrÞexpðinθÞ, where y is the cartesian coordinate.
Now we define the kinoform. Considering sðr; θÞ ¼ jsðr; θÞj

exp ½iϕðr; θÞ�, the kinoform of the complex field is defined as
hðr; θÞ ¼ exp ½iϕðr; θÞ�, i.e., it is obtained by removing the magnitude
jsðr; θÞj from sðr; θÞ. In order to assist the presentation of the
contribution, we recall the following property that provides the
necessary and sufficient condition for the optical fields to be
encoded with upper bound diffraction efficiency. The proof is
found in [14].

Property 1. The complex optical field sðr; θÞ satisfies
hðr; θÞ ¼ βubsðr; θÞ þ εðr; θÞ; ð3Þ
Z π

�π

Z R

0
snðr; θÞεðr; θÞr dr dθ¼ 0; ð4Þ

where εðr; θÞ is the coding noise and R is the radius of the circular
pupil, which limits the optical field, if and only if the upper bound
amplitude gain βub is expressed as

βub ¼
R π
�π

R R
0 jsðr; θÞjr dr dθR π

�π

R R
0 jsðr; θÞj2 r dr dθ

: ð5Þ

Using (3) and (4), the total light intensity of the phase
hologram Ih is given by Ih ¼ β2ubIs þ Iε, where β2ubIs and Iε are,
respectively, the total light intensities of the encoded field and
coding noise. The light intensities Is and Iε can be computed
as Is ¼

R π
�π

R R
0 jsðr; θÞj2 r dr dθ and Iε ¼

R π
�π

R R
0 jεðr; θÞj2 r dr dθ. By

removing the coding noise term from the kinoform, the optical
field sðr; θÞ is generated with the upper bound diffraction efficiency
given by ηub ¼ β2ubIs=Ih. This says that the generation of the optical
field uses the upper limit percentage of light.

In the context of digital holography, the coding noise is
removed at the Fourier plane if the spectrum of the encoded
nondiffractive field is noise free [10–12,14]. However, observe that
Property 1 does not involves any Fourier information. Next
property introduces the main contribution of this paper, i.e., we
demonstrate that the Fourier spectra of an arbitrary nondiffractive

field and coding noise do not overlap.

Property 2. Consider Property 1 with R being infinity and let
sðr; θÞ be an arbitrary nondiffractive complex optical field defined
in (2), then the domains of Sðρ;φÞ and Eðρ;φÞ are disjoints, where
Sðρ;φÞ and Eðρ;φÞ are, respectively, the Fourier transforms of the
field sðr; θÞ and coding noise εðr; θÞ.

Proof. First, using (2) and (5), the upper bound amplitude gain for
an arbitrary nondiffractive field sðr; θÞ is expressed as

βub ¼
1
2π

R π
�π

R R
0 jsðr; θÞjr dr dθ

∑1
n ¼ �1janj2

R R
0 J2nðkrÞr dr

: ð6Þ

Now, substituting (2) into jsðr; θÞj ¼ snðr; θÞhðr; θÞ and integrating,
the following relation holds
Z π

�π

Z R

0
jsðr; θÞjr dr dθ¼ ∑

1

n ¼ �1
an

n

Z π

�π

Z R

0
hðr; θÞJnðkrÞexpð�inθÞr dr dθ:

ð7Þ
Second, the Fourier expansion of the kinoform hðr; θÞ is given by

hðr; θÞ ¼ ∑
1

n ¼ �1
CnðrÞexpðinθÞ; ð8Þ

where Cn(r), for all n, are the Fourier coefficients. Additionally, we
expand the coefficient Cn(r) using Fourier–Bessel series, i.e.,

CnðrÞ ¼ ∑
1

q ¼ 1
cq;nJnðλq;nrÞ; ð9Þ

where λq;n, for q¼ 1;…;1, are the roots of JnðrÞ þ UnrJn′ðrÞ ¼ 0,
where Jn′ðrÞ is the first derivative of Jn(r), Un is a real-valued
constant, and the coefficient cq,n is given by [19]

cq;n ¼ 1R R
0 J2nðλq;nrÞr dr

Z R

0
Cn rð ÞJn λq;nr

� �
r dr: ð10Þ

We select the constant Un such that there exist roots λqn0 ;n ¼ k, for
some integer qn0 and all n, which satisfy JnðkÞ þ UnkJn′ðkÞ ¼ 0. All
roots λq;n, for q≠qn0 and for all n, are not equal to k [19]. Thus, Eq. (8)
becomes

hðr; θÞ ¼ ∑
1

n ¼ �1
cnJnðkrÞexp ðinθÞ þ εðr; θÞ; ð11Þ

where

ε r; θð Þ ¼ ∑
1

n ¼ �1
∑
1

q ¼ 1
q≠qn

0

cq;nJn λq;nr
� �

exp inθð Þ; ð12Þ

and the coefficient cn, according to the expansions (8) and (10), is
expressed as

cn ¼ cqn0 ;n ¼
1

2π
R R
0 J2nðkrÞr dr

Z π

�π

Z R

0
h r; θð ÞJn krð Þexp �inθð Þr dr dθ:

ð13Þ
Combining (6), (7), and (13), the coefficient cn can be rewritten as
cn ¼ βuban. Furthermore, from Property 1 and (11), the coding noise
is defined by (12). Finally, considering R infinity, we show that the
Fourier transforms of sðr; θÞ and εðr; θÞ do not overlap, i.e.,
Snðρ;φÞEðρ;φÞ ¼ 0. The Fourier transform of the nondiffractive field
sðr; θÞ is an annular delta, which is modulated by the complex
function AðφÞ (see Whittaker integral in (1)). On the other hand,
the Fourier transform of the coding noise consists of the super-
position of infinite number of annular deltas. The radius of each
annular delta is λq;n=2π and is not equal to k=2π. Therefore, the
domains of Sðρ;φÞ and Eðρ;φÞ are disjoints. &

Property 2 says that for an arbitrary nondiffractive optical field
the spectra of the field and coding noise do not overlap. In other
words, the Fourier transform of the coding noise evaluated at
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1 The authors in [3] pointed out that the corresponding separation constant is
continuous for Parabolic fields. However, to obtain orthogonal fields, the separation
constant must be discrete.
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