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a b s t r a c t

We investigate the effects of a squeezed pump on the quantum properties and conversion efficiency of
the light produced in single-pass second harmonic generation. Using stochastic integration of the two-
mode equations of motion in the positive-P representation, we find that larger violations of continuous-
variable harmonic entanglement criteria are available for lesser effective interaction strengths than with
a coherent pump. This enhancement of the quantum properties also applies to violations of the Reid–
Drummond inequalities used to demonstrate a harmonic version of the Einstein–Podolsky–Rosen
paradox. This could offer a real practical advantage over increasing the laser intensity, which will
eventually damage the crystal, or using a larger crystal, in which case dispersion problems can be
accentuated. We find that the conversion efficiency is largely unchanged except for very low pump
intensities and high levels of squeezing.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

One of the simplest non-linear optical processes is travelling
wave second harmonic generation [1], in which a nonlinear χð2Þ

crystal is pumped with an electromagnetic field at one frequency
and produces a second harmonic field at twice this frequency.
A comprehensive classical treatment of this process was first given
by Armstrong et al. [2]. The quantum properties of the output
fields were first calculated using a method of linearisation about
the classical solutions [3], even though it had long been known
that these were not accurate for arbitrary interaction strengths [4].
The approach of Walls and Tindle, using matrix equations for the
number state coefficients, was necessarily limited to small photon
numbers. The later development of the positive-P representation
[5], which maps the quantum evolution equations onto stochastic
differential equations in a doubled phase space, allowed for the
treatment of much larger photon numbers. For this system, this
was first taken advantage of by Olsen et al. [6] to treat the two-
mode model, finding that full conversion to the second harmonic
did not occur, but that the fundamental field experienced a revival
inside the crystal. This approach enabled a calculation of the
quantum properties, such as quadrature squeezing, of the output
fields without relying on any assumptions about the mean-field
solutions. The positive-P representation was also used to calculate
the QND (Quantum Non-Demolition) properties of the system [7]

and also compared with results found using the semi-classical
theory of stochastic electrodynamics [8]. The quantum correla-
tions between the two fields were also calculated [9], using
correlations which later became famous as the Duan–Simon
criteria for two-mode continuous-variable entanglement [10,11].
The entanglement between the fundamental and harmonic fields
was later named harmonic entanglement by Grosse et al. [12], who
calculated it for a system which could operate in both the up and
down-conversion regimes. The Reid correlations [13] for Einstein–
Podolsky–Rosen entanglement [14] between the two modes have
also been calculated previously [15]. In the spirit of Grosse et al.,
we shall name this harmonic steering. Generally speaking, the
production, analysis, and use of these types of correlations using
quadratures falls within the area of continuous-variable quantum
information [16].

The idea that the conversion efficiency in nonlinear optical
processes could be a function of the quantum statistics of the
inputs was raised by Shen [17] in 1967. Shen showed that the
conversion efficiency in the two-mode model of second harmonic
generation would depend on the second-order correlation func-
tion, gð2Þð0Þ [18], of the pump, predicting that light with chaotic
statistics would initially convert twice as efficiently as a coherent
pump. This was later verified by stochastic integration, where the
differences in efficiency between these pumps were explicitly
calculated [19] without making the small interaction approxima-
tions required in Shen's approach. The development of algorithms
to model different quantum states in the positive-P and Wigner
representations [20] allowed for the investigation of the effects of
these in the process of atom–molecule conversion in trapped
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Bose–Einstein condensates [21,22], showing that the initial quan-
tum statistics would also affect this process. Because squeezed
states with low average photon number have gð2Þð0Þ41, we
decided to investigate the effects of input squeezing in this system.
In this work, we use the method given in Ref. [20] to model the
input to our crystal as squeezed states with different degrees of
amplitude and phase quadrature squeezing, and investigate the
outputs in terms of conversion efficiency, single-mode squeezing,
two-mode entanglement, and the EPR paradox as expressed by the
Reid criteria.

2. Squeezed states

Before we enter into the calculations for the problem, we will
review the definition of squeezed states and the quadratures as we
define them in this work. This is necessary as there are several
different conventions found in the literature, which can lead to
confusion if the quantities used are not explicitly defined. We
begin with the bosonic annihilation operators, â for photons in the
fundamental mode at frequency ω, from which we define the
quadrature operator

X̂ a ¼ â þ â†
; Ŷ a ¼�iðâ�â†Þ; ð1Þ

with similar definitions for the harmonic mode at 2ω, using the
operator b̂. With this definition of the quadratures, the vacuum or
coherent state level of the variances is

VðX̂j Þ ¼ VðŶ jÞ ¼ 1; ð2Þ
where j¼ a; b.

A squeezed state is then a state of the electromagnetic field that
has a variance of less than one in one of the quadratures, at the
expense of increased fluctuations in the orthogonal quadrature.
We note here that the quadratures can be defined at any angles,
but that zero and π=2 are sufficient for our purposes here. A
coherently displaced squeezed state is written as jα; reiϕ〉, where
the c-number α represents the coherent displacement and r is
known as the squeezing parameter, with ϕ the angle of the
squeezed quadrature. This state has a mean intensity, Na ¼
jαj2þsinh2r and quadrature variances for ϕ¼ 0, VðX̂ aÞ ¼ e�2r and
VðŶ aÞ ¼ e2r . For ϕ¼ π=2, the Ŷ quadrature is squeezed and
X̂ is anti-squeezed. The formal squeezing operator is SðϵÞ ¼
expð1=2ϵnâ2�1=2ϵâ†2Þ [23], where ϵ¼ re2iϕ. As this operator cre-
ates and annihilates photons in pairs, we might expect a squeezed
field to lead to increased second harmonic conversion efficiency,
which we will investigate in what follows.

The second-order correlation function is

gð2Þ 0ð Þ ¼ 〈â† â† ââ〉

〈â† â〉2;
ð3Þ

which can be expressed in terms of the number variance as

gð2Þ 0ð Þ ¼ 1þ VðNÞ�〈â† â〉

〈â† â〉2:
ð4Þ

We can immediately see that if we have a super-Poissonian field
with VðNÞ4〈â†â〉, gð2Þð0Þ will be greater than unity and we will

find photon bunching. On the other hand, VðNÞo〈â†â〉 will give an
anti-bunched field.

The explicit expressions for the number variances are found
as [1]

VðNÞ ¼ jαj2expð�2rÞ þ 2 sinh2r cosh2r; X squeezed

VðNÞ ¼ jαj2expð2rÞ þ 2 sinh2r cosh2r; Y squeezed; ð5Þ
fromwhich we see that a field squeezed in the X̂ quadrature will tend
to exhibit anti-bunching while one squeezed in the Ŷ quadrature will

tend to exhibit bunching. However, calculations show that even for
a coherent amplitude of α¼ 102, the values of gð2Þð0Þ remain close
to unity for the range 0≤r≤2 which we use in this work. As the
coherent amplitude increases, they diverge even less from unity,
so that we would not expect a squeezed pump to result in
significantly enhanced conversion efficiency except for very weak
pumps. We will investigate the effects on the quantum properties
of the output fields below, using stochastic integration.

3. Hamiltonian and equations of motion

In this work we will use a simplified description of travelling
wave second harmonic generation which does not treat dispersion
within the χð2Þ medium and treats the fields as plane waves at
fixed frequencies, ω and 2ω. This approach would not be perfectly
accurate if we sought to model an actual experiment, in which
case we would need to know the dispersion and loss properties of
the actual crystal and the beam profile of the input laser. However,
in the general case, it is sufficient to show the effects we are
looking for as functions of the degree of squeezing of the pump
beam. In this sense we are able to establish the optimal correla-
tions which may be aimed for, with the exact accuracy depending
on how closely our ideal situation can be approached, without
losing the generality of our treatment.

The interaction Hamiltonian is written as

H¼ iℏ
κ

2
â†2b̂�â2b̂

†
� �

; ð6Þ

where κ is the effective nonlinearity, â is the bosonic annihilation
operator for photons at frequency ω, and b̂ is the bosonic annihila-
tion operator for photons at frequency 2ω, as defined above in
Section 2. Following the standard procedures [24], we map this
Hamiltonian onto a set of four stochastic differential equations for
the evolution of the c-number variables of the positive-P phase-
space representation as the fields traverse the nonlinear medium.
Proceeding via the von Neumann and Fokker-Planck equations,
we find

dα
dz

¼ καþβ þ
ffiffiffiffiffi
κβ

p
η1 zð Þ;

dαþ

dz
¼ καβþ þ

ffiffiffiffiffiffiffiffi
κβþ

q
η2 zð Þ;

dβ
dz

¼� κ

2
α2;

dβþ

dz
¼� κ

2
αþ2; ð7Þ

where the ηjðzÞ are real Gaussian noise terms with the properties

ηjðzÞ ¼ 0 and ηjðzÞηkðz′Þ ¼ δjkδðz�z′Þ. The independence of the two
noise terms means that α and αþ are not complex conjugate except
on average, which also holds for β and βþ. It is this property which
allows us to integrate what are equivalent on average to equations
of motion for non-commuting operators. Averages over a large
number of trajectories of the system of equations above allow us to
find normally ordered operator expectation values, with

αmαþn-〈â†nâm〉; ð8Þ

and similarly for b̂; b̂
†
and β; βþ. In practice we integrate these

equations in Matlab and average over at least 107 trajectories.

4. Squeezing for different input states

We have investigated the outputs for pump fields which are
squeezed in either the X̂ (amplitude) or Ŷ (phase) quadratures, for
squeezing parameters, r¼0,.5,1. The results are shown in the
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