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The chaotic unpredictability properties of mutually-coupled laser diodes (LDs) are investigated
numerically. The unpredictability degree is evaluated quantitatively via the permutation entropy (PE).
The effects of coupling strength, frequency detuning, feedback strength, as well as time delays are
considered. It is shown that, compared with the unidirectional coupling case, two unpredictability-
enhanced chaotic signals can be simultaneously obtained for the mutual coupling case, and the
parameters regions contributing to unpredictability-enhanced chaos are also broadened. Besides, the
PE values for two mutually-coupled LDs are close to each other, with the exact relationship being related
to frequency detuning, due to the leader-laggard relationship in terms of injection locking effect. We also
consider small network of mutually-coupled LDs, where the effects of connection topologies and
frequency detuning are mainly examined. The small network of mutually-coupled LDs can generate
several independent unpredictability-enhanced chaotic signals in parallel, which is extremely useful to
substantially increase the bit rate and improve the randomness of random number generators based on

chaotic LDs.

© 2013 Published by Elsevier B.V.

1. Introduction

Chaotic laser diodes (LDs) have attracted more and more atten-
tion due to their potential applications in secure optical commu-
nications systems [1-23] as well as random number generators
(RNGs) [24-34]. On the one hand, the synchronization properties
of both unidirectionally-coupled and mutually-coupled chaotic
LDs have been studied extensively [1-14]. Especially, the chaos
synchronization and communication among networks of chaotic
LDs have attracted lots of attention recently, due to the rapid
development of complex system and complex network [15-23].
On the other hand, Uchida et al. [24] demonstrated fast high speed
RNGs based on chaotic LDs recently. Since this pioneer work,
chaotic LDs have been considered as popular physical entropy
sources for high speed RNGs [25-34], and great progress has been
made in improving the rate of random bit sequences. Argyris et al.
employed a photonic integrated circuit (PIC) that emitted broad-
band chaotic signals for successful generation of random bit
sequences at 140 Gbps [26]. Kanter et al. adopted a high derivative
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of the digitized chaotic laser intensity and generated the random
sequence by retaining a number of the least significant bits of the
high derivative value, where an effective output rate of 300 Gbps
was achieved [27]. Akizawa et al. proposed to reverse the order of
the eight-bit samples of the time delayed signal and perform
bitwise XOR operation between the bit-order-reversed samples
and the original eight-bit samples, and equivalent generation rate
of 400 Gbps was achieved [33]|. However, the majority reported
techniques of RNGs based on chaotic LDs requires complicated
digital post processing to increase the randomness.

In our earlier works, we demonstrated two general photonic
approaches to generate unpredictability-enhanced physical chaos,
which can further increase the randomness of high speed RNGs
[35,36]. It was found that, by introducing dual-path-injection from
single master LD, or by adopting dual-chaotic-optical-injection
from two different master LDs, the chaotic unpredictability degree
of the slave LD could be enhanced significantly compared to the
conventional master-slave configuration with single-path-
injection, and the parameter regions contributing to unpredictability-
enhanced chaos could also be greatly broadened [35,36]. However,
in those two systems, only the slave LD can generate
unpredictability-enhanced chaos. So far, the chaotic unpredictabil-
ity properties of mutually-coupled LDs have not been examined,
especially when more than two LDs are coupled as small network.
Hence, it is interesting and useful to explore whether small
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network of mutually-coupled LDs can simultaneously provide
several unpredictability-enhanced chaotic signals in parallel, and
thus increase significantly the bit rate of the resulted random
numbers.

This work addresses specifically this issue, and the effects of
connection topologies on chaotic unpredictability degree of small
network of mutually-coupled LDs are also examined. Considering
the advantages of simplicity, fast calculation, robustness, we adopt
the normalized permutation entropy (PE) to evaluate quantita-
tively the degree of unpredictability for the chaotic outputs of LDs
[37].The remainder of this paper is organized as follows. In Section
2, a theoretical model of mutually-coupled LDs are presented.
Besides, the definition of PE is introduced to quantitatively
evaluate the unpredictability degree of chaotic signals. In Section
3, for the purpose of comparison, we first consider the case of two
mutually-coupled LDs, and compare the unpredictability proper-
ties with the unidirectional coupling case. The roles of coupling
strength and frequency detuning are mainly examined, and the
effects of feedback strength and time delays are also taken into
account. Then a system consisting of three mutually-coupled LDs
is taken as a basic small network, and the unpredictability proper-
ties for different connection topologies are discussed and com-
pared. Finally, conclusions are drawn in Section 4.

2. Theory

The schematic diagrams of the two coupled LDs and three
coupled LDs are shown in Fig. 1. Only the fully connected
topologies are presented. We introduce connection matrix
A= (amp) corresponds to the coupled LDs system, where
m=1,2,3 and n=1,2,3. amy =1 represents the coupling from
LDm to LDn, and denotes self feedback for the cases of
m=n.amy, =0 denotes no coupling from LDm to LDn. For simpli-
city, we consider homogenous node in the coupled network, and
concentrate on the effects of connection between nodes.

2.1. Rate equation model for mutually-coupled LDs

The rate equations for the small network of coupled LDs based
on Lang-Kobayashi equations can be read as [38],

dEqn(t) 1 . 1 ;
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where subscript m=1,2,3 stands for LDm. The second term in
Eq. (1) denote self feedback and the last term in Eq. (1) represents
all coupling into LDm. ky, and 7y, are the feedback strength and
feedback delay, k,m and z,,, are the coupling strength and coupling
delay, and z;mm = 7nm = 3ns. K is the total number of node in the
network. o, is the angular frequency of LDn, and we fiX w1 = 2zf,
is the angular frequency of LD1 with wavelength at 1550 nm, the
frequency detuning between the LDs is defined as Af,,,=
(wm—wn)/27 = f,—f,. The other parameter description and corre-
sponding values used in the simulations are presented in Table 1.
For simplicity, we have neglected noise effects in the LDs. We
assume that the internal parameters are identical for all LDs in
network. With these parameter values, the relaxation oscillation
frequency of the solitary LD is fro=5.3 GHz.

2.2. Quantifier for chaotic unpredictability: Permutation entropy

To illustrate the idea of PE method [37], let us embed a given
time series {x;,t=1,---,T} to a d-dimensional space X;=[x(t),
X(t+7e), - ,X(t+(d—1)ze)], where d(z.) is the embedding dimen-
sion (delay). For practical purpose, Bandt and Pompe suggested
using 3<d<7 with z,=1 and indicated that the condition
T > > d! should be satisfied to obtain a reliable statistics. The X;
can be arranged as an increasing order of [x(t+(ri—1)z.) <
X(t+(ry—1)re) < -+ <x(t+(rg—1)ze)], and when Xx[t+(ry—1)ze] =
X[t+(ro—1)ze] we order the quantities as X[t+(ry—1)ze] < X[t+
(rp—1)ze), if 1y <rp. Hence, any vector X; is uniquely mapped
onto an “ordinal pattern” z = (ry,13,...,r4). For all the d! possible
permutations z of the order d, the probability distribution
P = {p(n)} of the “ordinal patterns” is defined by [37]:

_ #{tit<T-d+1; X; has type z}

b 4
p(x) e @
Table 1
Parameter sets in the numerical simulation.

Parameter Description Value

a Linewidth enhancement factor 5

o Photon lifetime 2 ps

Tn Carrier lifetime 2 ns

g Differential gain coefficient 1.5x 1078 ps-!

No Carrier transparency 1.5 x 108

e Gain compression coefficient 5% 1077

Iin Threshold current 14.7 mA

1 Bias current 1.81

q Electric charge 16x 10°1°

kf\ 2

Fig. 1. Schematic diagram of fully connected topologies for (a) two, and (b) three coupled LDs system, 1-3 represent LD1, LD2 and LD3, respectively.
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