

Contents lists available at ScienceDirect

Solar Energy Materials & Solar Cells

journal homepage: www.elsevier.com/locate/solmat

Effect of illumination intensity on cell parameters of a silicon solar cell

Firoz Khan^{a,*}, S.N. Singh^a, M. Husain^b

^a Electronic Materials Division, National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K.S. Krishnan Marg, New Delhi-110012, India ^b Department of Physics, Jamia Millia Islamia, New Delhi-110025, India

ARTICLE INFO

Article history: Received 12 June 2009 Received in revised form 23 February 2010 Accepted 12 March 2010 Available online 2 April 2010

Keywords: Silicon solar cells Cell parameters Shunt resistance Series resistance Diode ideality factor

ABSTRACT

The effect of illumination intensity P_{in} on the cell parameters of a silicon solar cell has been investigated based on one diode model. The variation of slopes of the *I*–*V* curves of a cell at short circuit and open circuit conditions with intensity of illumination in small span of intensity has been applied to determine the cell parameters, viz. shunt resistance R_{sh} , series resistance R_s , diode ideality factor *n* and reverse saturation current I_0 of the cell. The dependence of cell parameters on intensity has been investigated for a fairly wide illumination intensity range 15–180 mW/cm² of AM1.5 solar radiations by dividing this intensity range into a desirable number of small intensity ranges for measurements of the slopes of the *I*–*V* curves at short circuit and open circuit conditions. Initially R_{sh} increases slightly with P_{in} and then becomes constant at higher P_{in} values. However, R_s , *n* and I_0 all decrease continuously with P_{in} , but the rate of decrease of each of these becomes smaller at higher P_{in} values. Theoretical values of open circuit voltage V_{oc} , curve factor CF and efficiency η calculated using the cell parameters determined by the present method match well with the corresponding experimental values.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The steady state I-V characteristics of a p-n junction silicon solar cell are often described based on one diode model [1–3] as

$$I = -I_{ph} + I_0 \left(e \frac{q(V - IR_s)}{nkT} - 1 \right) + \frac{(V - IR_s)}{R_{sh}}$$
(1)

In Eq. (1) I_{ph} is the light generated current, q is electron charge, k is Boltzmann constant and T is the temperature, R_{sh} is the shunt resistance, R_s is the series resistance, n is the diode ideality factor and I_0 is the reverse saturation current of the cell. R_{sh} , R_s , n, I_0 are cell parameters of the cell. These cell parameters control the I-V characteristics of a cell at any given intensity of illumination and cell temperature and thus decide the values of the performance parameters, viz. the short circuit current (I_{sc}), open circuit voltage (V_{oc}), curve factor (CF) and thereby the efficiency (η) of the cell. As the intensity of illumination changes the values of performance parameters on illumination intensity can get affected if the values of the cell parameters R_{sh} , R_s , n and I_o themselves change with illumination intensity.

Therefore, it is important to evaluate all cell parameters R_{sh} , R_s , n and I_0 and study their variation with illumination intensity. Variation of the cell parameters, viz. R_{sh} and R_s with illumination intensity has been investigated analytically by several researchers

[2,4,5]. However, the studies on the effect of illumination intensity on n and I_0 are rather scarce in literature [8]. Datta et al. [8] have applied a computer aided curve fitting technique to determine the values of R_{sh} , R_s , n and I_0 using I,V values corresponding to the various points on a single I-V curve obtained at a given intensity. They have determined the values of these parameters only at three values of P_{in} and their results do not show any clear trend of variation of these parameters with P_{in} .

Most silicon solar cells are designed to work under normal sunlight and their performances are evaluated at 25 °C under an AM1.5 solar irradiation of 100 mW/cm² intensity. Also, as stated earlier, the one diode model is most commonly used to describe the *I*–*V* characteristics of a cell. Therefore, in this work, we have investigated the variation of cell parameters based on one diode model, viz. R_{sh} , R_s , *n* and I_0 in the illumination intensity range 15–180 mW/cm². For this purpose, we divide such a wide intensity range into a large number of smaller intensity ranges, wherein the cell parameters will remain constant. We determine values of all the four cell parameters of a silicon solar cell, analytically from the variation of slopes of the *I*–*V* curve at short circuit and open circuit with P_{in} in all the smaller intensity ranges one after the other.

2. Theoretical

Denoting the slope dI/dV of I-V curve at short circuit (V=0, $I=-I_{sc}$) by m_{sc} and that at open circuit ($V=V_{oc}$, I=0) by m_{oc} we

^{*} Corresponding author. Tel.: +91 11 45608330; fax: +91 11 45609310. *E-mail address:* firozkphysics@gmail.com (F. Khan).

^{0927-0248/\$ -} see front matter \circledcirc 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.solmat.2010.03.018

(10)

can obtain from Eq. (1) relations of slopes m_{sc} and m_{oc} with the cell parameters as

$$m_{sc} = \frac{\left[1/R_{sh} + qI_0/nkT e^{\frac{qI_{sc}R_s}{nkT}}\right]}{\left[1 + R_s \left\{ \left| 1/R_{sh} + qI_0/nkT e^{\frac{qI_{sc}R_s}{nkT}} \right| \right\} \right]}$$
(2)

$$m_{oc} = \frac{\left[1/R_{sh} + qI_0/nkT/e^{\frac{qV_{oc}}{nkT}}\right]}{\left[1 + R_s \left\{1/R_{sh} + qI_0/nkT e^{\frac{qV_{oc}}{nkT}}\right\}\right]}$$
(3)

Eq. (2) shows that m_{sc} is related with the diode parameters $(R_{sh}, R_s, n \text{ and } I_0)$ and I_{sc} of the cell. Similarly Eq. (3) shows that m_{oc} is related with the cell parameters and V_{oc} of the cell. Since both I_{sc} and V_{oc} depend on the intensity of illumination P_{in} we can expect both m_{sc} and m_{oc} to change with P_{in} , whether or not the cell parameters change with P_{in} .

Since a practical solar cell is designed to keep R_s small and R_{sh} large, the two conditions

$$\frac{qI_0}{nkT}e^{\frac{qI_sR_s}{nkT}} \ll \frac{1}{R_{sh}}$$
(4)

and

$$\frac{qI_0}{nkT}e^{\frac{qV_{0c}}{nkT}} \gg \frac{1}{R_{sh}}$$
(5)

are satisfied simultaneously for a significantly wide P_{in} range of operation of the cell. We shall henceforth refer to it as a suitable P_{in} range. In this P_{in} range Eqs. (3) and (4) are simplified to give

$$m_{sc}^{-1} = (R_{sh} + R_s) \tag{6}$$

and

$$m_{oc}^{-1} = \left[R_s + \frac{nkT}{qI_0} e^{-\left(\frac{qV_{oc}}{nkT}\right)} \right]$$
(7)

In this P_{in} range $V_{oc} \gg I_{sc} R_s$, hence,

$$I_0 e^{\frac{qV_{oc}}{nkT}} \approx I_{sc} - \frac{V_{oc}}{R_{sh}}$$
(8)

Substituting Eq. (8) into Eq. (7) we obtain

$$m_{oc}^{-1} = \left[R_{s} + \frac{nkT}{q} \frac{1}{\left(I_{sc} - \frac{V_{oc}}{R_{sh}} \right)} \right]$$
(9)

Also because $R_s \ll R_{sh}$, Eq. (6) can be approximated as

$$R_{sh} = m_{sc}^{-1}$$

The combination of Eqs. (7), (9) and (10) can be used to determine representative values of R_{sh} , R_s , n and I_0 of a cell from measurements of I_{sc} , V_{oc} , m_{sc} and m_{oc} at different intensities in a suitable range of P_{in} .

3. Experimental

The measurements for the present work were made on monocrystalline silicon (*c*-Si) solar cells of ~8 cm² area which were fabricated using 300 µm thick, $\langle 1 0 0 \rangle$ oriented *p*-Cz silicon wafer of 1 Ω cm base resistivity. The *p*-*n* junction was made by *P*-diffusion using a POCl₃ liquid source. Front and back contacts were realized by screen printing Ag paste on front and Ag/Al paste on back sides of the cells. A single layer silicon nitride antireflection coating was given by a PECVD process using SiH₄, NH₃ and N₂ gases. Illuminated *I*-*V* characteristics of the cells were measured at 25 °C at different intensities in small spans of intensity which together covered a fairly wide intensity range 15–180 mW/cm² of simulated AM 1.5 solar radiation. The cell with its *n*+ front emitter on top was mounted on a gold plated base which was maintained at a constant temperature using a

refrigerated water circulator Julabo Model F10. The cells were illuminated with a simulated AM1.5 global radiation and illuminated *I–V* characteristics were measured with the help of a KEITHLEY 2420 system sourcemeter. The illumination intensity was measured using a reference silicon solar cell obtained from PV Measurements, USA. In the following the results of measurements of cell parameters will be reported for a silicon solar cell, cell #1 fabricated as described above.

4. Result and discussion

A number of *I*–*V* curves were obtained for cell #1 in five small spans of intensity ranges, viz. $15 < P_{in} < 31 \text{ mW/cm}^2$, $35 < P_{in} < 55 \text{ mW/cm}^2$, $60 < P_{in} < 80 \text{ mW/cm}^2$, $95 < P_{in} < 122 \text{ mW/cm}^2$ and $145 < P_{in} < 180 \text{ mW/cm}^2$. The values of I_{sc} , V_{oc} , m_{sc} and m_{oc} of the *I*–*V* curves in each of the above P_{in} ranges were used to determine the cell parameters. The value of m_{sc} was nearly invariant with intensity and thereby yielded a constant value of R_{sh} according to Eq. (10). These values of R_{sh} were in turn used with I_{sc} , V_{oc} and m_{oc} values to determine values of R_{s} , n and I_0 of the cell as described in the following for one intensity range, viz. $15 < P_{in} < 31 \text{ mW/cm}^2$.

The values of m_{oc}^{-1} were plotted against $(I_{sc} - V_{oc}/R_{sh})^{-1}$ in $15 < P_{in} < 31 \text{ mW/cm}^2$ range as shown in Fig. 1 and were fitted into a straight line represented by Eq. (9). The intercept of the straight line on m_{oc}^{-1} axis gave the value of R_s and the slope of the line with the $(I_{sc}-V_{oc}/R_{sh})^{-1}$ axis yielded the value of nkT/q. The value of nkT/q thus obtained was used in Eq. (7) and, then, the plot of m_{oc}^{-1} vs. $e^{-qVoc/nkT}$ data and their subsequent fit into a straight line as shown in Fig. 2 yielded the value of I_0 from its slope nkT/qI_0 with the $e^{-qVoc/nkT}$ axis. The intercept of m_{oc}^{-1} vs. $e^{-qVoc/nkT}$ line on m_{oc}^{-1} axis of Fig. 2 also gave a value of R_s . Thus, the values of R_{sh} , R_s , n and I_o for cell #1 were determined for $15 < P_{in} < 31 \text{ mW/cm}^2$ range. Similarly, the values R_{sh} , R_s , n and I_o for cell #1 for the remaining four small P_{in} ranges (35 < P_{in} < 55 mW/cm², $60 < P_{in} < 80$ mW/cm², $95 < P_{in} < 122$ mW/cm² and $145 < P_{in} < 180 \text{ mW/cm}^2$) were also determined. The values of the cell parameters show that the conditions (4), (5) and Eqs. (8) and (9) have been fully valid for cell #1 in all the P_{in} ranges used in the measurements. The errors are less than 0.01%. The values of R_{sh} , R_s , n and I₀ determined as above for different P_{in} ranges were assigned to the mean P_{in} value of the each P_{in} range.

Fig. 1. Plot of m_{oc}^{-1} vs. $(I_{sc}-V_{oc}/R_{sh})^{-1}$ curve for cell #1 at T=25 °C and small intensity range $15 < P_{in} < 31$ mW/cm². The solid line gives a straight line fit to the data. The intercept on m_{oc}^{-1} axis gives R_{s} .

Download English Version:

https://daneshyari.com/en/article/79326

Download Persian Version:

https://daneshyari.com/article/79326

Daneshyari.com