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a b s t r a c t

An efficient wavelength conversion scheme based on amplitude modulation is proposed, and it
demonstrated by mathematical formulate in an MgO-doped LiNbO3 quasi-phase-matched waveguide.
This method is based on the adiabatic physical process of two-state systems. By nonlinear modulate the
overlap of waveguide modes to achieve the purposes of phase-matching and modulate the coupling
coefficient. Under the adiabatic constraints condition, we simulate numerically difference frequency
generation process. The results shown that this scheme can lead to almost complete transfer of energy
from near-IR (�1064 nm) to mid-IR (�3.53 mm) in a stable manner. Furthermore, we also present two
analytically exactly soluble models, in which the coupling coefficient is a linear function of propagation
distance and the phase mismatch is a constant.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Mid-IR lasers in the 3–5 mm wavelength region have many
applications, such as military countermeasures, remote monitors
of the special environment, spectrum, and so on [1,2]. For the
generation of infrared (IR) radiation, parametric generation is the
simplest approach [3,4]. However, the requirements of phase
matching are critical to high frequency conversion. Especially for
the ultrashort pulses generation, conversion bandwidth and the
conversion efficiency often cannot be satisfied at the same time
[5,6]. Therefore, exploring broadband and efficient frequency
conversion methods is a meaningful thing.

In recent years, by analogizing to the frequency transformation
process with a two-level atom system dynamics, the concept of
adiabatic frequency conversion has been proposed [7,8]. It has
been shown that nonlinear interactions in chirped QPM gratings
can exhibit high efficiencies due to an adiabatic following process.
But this behavior occurs for interactions that are both plane-wave
and monochromatic, provided QPM grating is sufficiently chirped.

In this paper, a technique called mode-overlap control (MOC)
[9,10] be employed to modulate the coupling coefficient, we also
obtain high conversion efficiency. This feat is accomplished in a
manner analogous to population transfer in atomic rapid adiabatic
passage (RAP) [11,12]. In addition, we also present two analytically
exactly soluble models, in which the coupling coefficient is a linear
function of propagation distance and the phase mismatch is a
constant. As it shows that modulate the coupling coefficient can
also achieved high efficiency signal-to-idler conversion.

2. Theoretical model and analysis

Suppose a rather general model of pump and signal wave in a
transversely patterned QPM grating. The electric field at the
frequency ωm is Em ¼ umðx; yÞemðzÞexpiðωmt�kmzÞþc:c, um(x, y)
(m¼1, 2, 3) is the normalized mode profile at frequency of
ωm(∬ jumðx; yÞj2dxdy¼ 1), km¼(ωmnm/c0) is propagation constant,
where nm is the refractive index, the nonlinear coupling equations
[13] for the field amplitudes em is

de1
dz

¼�2i
ω1deff
n1c

κnðzÞe2e3 ð2� 1aÞ

de2
dz

¼�2i
ω2deff
n2c

κðzÞe1e3n ð2� 1bÞ

de3
dz

¼�2i
ω3deff
n3c

κðzÞe2ne1 ð2� 1cÞ

Coupling coefficient κðzÞ ¼ expð�iΔkzÞð∬ dxdyu1u2u3Þdðx; y; zÞ,
different frequency ω3 ¼ω1�ω2, the phase mismatch
Δk¼ k1�k2�k3, d(x,y,z) defines the spatially dependent sign of
the nonlinear interaction (d¼1 in positive domains, d¼�1 in
inverted domains).

The coupled nonlinear Eq. (2–1a–c) are often linearized,
assuming that the incident signal field is much stronger than
other fields and therefore its amplitude is nearly constant
(undepleted) during the evolution. In this paper, we assume the
“pump” is the middle frequency wave ω2, where as the “signal” is
the high-frequency wave ω1 and the “idler” is the low-frequency
wave ω3. Then Eq. (2–1a–c) are reduced to a system of two linear
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equations [14]
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c2. Upon the substitution

z-t, Eq. (2-2) has the same form of the time-dependent Schrö-
dinger equation for a two-state quantum system. Following the
approach of Suchowski et al. [7,8], the time evolution is replaced
by propagation in z-axis and the resonance parameter Δ is

replaced by the phase-mismatch Δk value, Rabi frequency Ω(t)

is replaced by coupling parameters κ(z), the population of the
ground and excited states are analogous to the magnitude of the
input and output fields, respectively. In two-state coherent popu-
lation systems, if have the pulsed interaction, the adiabatic
energies will be a superposition of diabatic states at intermediate
times and have adiabatic follows process [15]. We are going to use
the adiabatic follows process in frequency conversion.

The two eigenvalues of the coupling matrix H are [14]

λ1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔk=2Þ2þκ2

q
; λ3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔk=2Þ2þκ2

q
ð2� 3Þ

Defining tan ð2θÞ ¼ 2jκj=ΔkðzÞ; according to the two level
systems in atomic physics [16,17], the adiabatic dressed fields is
φ′

1 ¼� cos ðθÞφ1þ sin ðθÞφ3, φ′
3 ¼ sin ðθÞφ1þ cos ðθÞφ3. If the

system is at an eigenstate and is subject only to adiabatic changes,
it will remain at the same eigenstate. When the mixing angle θ
rotates from 0 to π/2, all power will be completely transferred
from φ1 to φ3. In order to ensure the θ adiabatic changes, the
coupling between the dressed fields must be negligible compared
with the difference between their eigenvalues

d
dz
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Defining the parameter r¼ 1
λ1�λ3j j
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dzφ
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��� ��; we could obtain
the adiabatic criterion of frequency conversion
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dz

����
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Furthermore, for the purpose of satisfying simultaneously
phase match and independently control their interaction strength,
we consider the transverse patterning [9,10] of d(x,y,z) shown in
Fig. 1

With the gratings patterned into and out of the waveguide, the
overlap of the waveguide mode will nonlinearity modulated, this
method is called mode-overlap control (MOC) [9,10]. Introduce the
overlap integrals f ðtÞ ¼ R tðzÞ

�1 dx
R þ1
�1 dyu1u2u3ðx; yÞ, the coupling

parameters slowly varying given by the local averaged values
of κ, and the coupling coefficient expression is

κ1ðzÞ ¼
2
π
f tðzÞ½ � sin ðπDÞexp �iðΔk72π=ΛÞz� � ð2� 6Þ

3. Numerical simulation under ideal conditions

The design was carried out by numerical simulation of the
Eq. (2-1a–c) using the variable-step fourth-order Runge–Kutta
method. Both pump and signal models are assumed Gaussian
beams in a 50-mm long periodically PPLN waveguide which
satisfies the constraints posed by Eq. (2-4). For the sake of
simplicity, assume umðx; yÞ ¼

ffiffiffiffiffiffiffiffiffi
2=π

p
ð1=wmÞexp½�ðx2þy2Þ=w2

m�, and
w1¼w3¼1 mm, w2¼50 μm. The t(z) is a quadratic equation,
tðzÞ ¼ 2:5� 10�3 � ð2z=L�1Þ2. The pump and signal light wave-
length are 1523 nm and 1064 nm, respectively. Difference fre-
quency generation idler light is 3.53 μm, and the other structural
parameters can be calculated from the Sellmeier equation [18]. The
pump intensity was set 280 MW/cm2 and signal intensity was set
0.127 MW/cm2. Fig. 2 Part (a) shows the normalized intensities of
the interacting waves along the nonlinear crystal. If every photon
at λ1 is converted to a photon at λ3, the intensity ratio is I1/I3¼ω1/
ω3¼λ3/λ1, full conversion means I3¼0.303, so the input power is
considered to be fully converted to the output wave. In the same
condition, the conversion efficiency of constant coupling is far less
than adiabatic MOC, Fig. 2 Part (b) shows the corresponding
results. The conversion efficiency of constant coupling is displayed
that maximum value reaches at most 5�10�3 far less than the
adiabatic conversion efficiency in the inset.

No matter Birefringent Phase Matching (BPM) or QPM, both
methods are typically very sensitive to the incoming frequency,
angle, temperature or other tuning mechanisms, due to the require-
ment of phase matching. However, satisfied adiabatic criterion of
mode-overlap control method is not restricted by Δk¼0. For
comparison, we assume Δk¼10 m�1, 100 m�1, 200 m�1, respec-
tively, repeated the same simulation, the results are depicted in
Fig. 3. As is shown in Fig. 3 Part (a), when Δko100 m�1, conver-
sion efficiency is more than 60 percent. Although phase matching is
no longer restricted Δk¼0, Δk also cannot very large, because of
achieving full of energy transfer in parameter conversion process, it
not only requires adiabatic condition to be satisfied, but also

t(z)

x

y

Fig. 1. The transverse patterning of the grating, with domain reversal at the shaded
regions corresponding to d(x,y,z)¼�1, provides mode-overlap control and tailoring
of the coupling terms.

Fig. 2. Numerical simulation of the intensities of the interacting waves along the nonlinear medium in adiabatic coupling. Part (a) is normalized intensities of the interacting
waves along the nonlinear crystal. Part (b) is the conversion efficiency of constant coupling and adiabatic MOC, respectively
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