Contents lists available at ScienceDirect

Photonics and Nanostructures – Fundamentals and Applications

journal homepage: www.elsevier.com/locate/photonics

A low loss semi H-shaped negative refractive index metamaterial at 4.725 THz

M. Askari^{a,*}, A. Zakery^b, A.S. Jahromi^c

^a Physics Department, College of Sciences, Salman Farsi University of Kazerun, Kazerun, Iran

^b Physics Department, College of Sciences, Shiraz University, Shiraz, Iran

^c Zarghan Branch, Islamic Azad university, Zarghan, Iran

ARTICLE INFO

Article history: Received 30 June 2017 Received in revised form 8 March 2018 Accepted 8 March 2018 Available online 28 March 2018

Keywords: Electromagnetic resonances Negative refraction Metamaterial Near infrared

1. Introduction

Interaction of electromagnetic waves with subwavelength metallic structures called metamaterials has attracted considerable attention in recent years. These metallic microstructures can be designed in such a way to provide novel electromagnetic properties, which are not naturally available. [1–11]. These novel properties give rise to potential applications in super-lensing, invisibility cloaking, molecular spectroscopy, and ultra-sensitive biochemical sensing [12–16], and therefore, researchers have made several attempts to realize metamaterials in the whole electromagnetic spectrum [11,17,18].

One of the features of metamaterials that has largely been studied is the negative refractive index, which was initially proposed by Veselago as an academic concept [19]. About three decades later, it was realized that magnetic response could be achieved by using artificial structures [20]. Later on, a composite structure based on split-ring resonators was realized, and it was shown that the real parts of permittivity $\Re(\epsilon)$ and permeability $\Re(\mu)$ were negative over a common frequency band, and therefore, the existence of negative refractive index was experimentally realized [21]. In addition to split-ring resonators, other metamaterial structures such as short wire pair structures, fishnet structures, and chiral metamate-

* Corresponding author. E-mail address: MehdiAskari@kazerunsfu.ac.ir (M. Askari).

https://doi.org/10.1016/j.photonics.2018.03.001 1569-4410/© 2018 Elsevier B.V. All rights reserved.

ABSTRACT

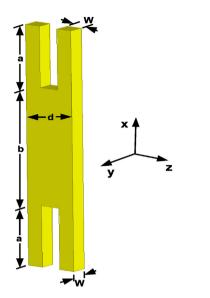
We numerically propose a negative refractive index metamaterial structure with a unit cell composed of only one semi H-shaped element. With this structure a very high transmission of -0.65 dB and a low reflection of -16.48 dB can be achieved at 4.725 THz, with the real part of the refractive index equal to -1.9. The FOM of the structure is 89.43, which warrants the quality of the proposed structure for negative refractive index applications.

© 2018 Elsevier B.V. All rights reserved.

rials have been realized so far to represent negative refractive index [22–30].

One of the first structures designed to represent negative refractive index were those composed of split-ring resonators and metallic wires, in which split-ring resonators were exploited to provide negative real part of magnetic permeability $\Re(\mu)$, and continuous wires were exploited to provide a negative real part of electric permittivity $\Re(\epsilon)$. There have also been some metamaterial structures composed only of split ring resonators, which exhibit negative refractive index at microwave frequencies [31]. For infrared and optical frequencies, structures composed of U-shaped elements are more common than split-ring resonators. In addition to negative refractive index applications, U-shaped structures are widely used in designing chiral metamaterials and in structures suitable for biosensing applications [32–35].

In this paper, we propose a negative refractive index metamaterial structure with a unit cell composed of only one semi H-shaped resonator (SHR) element. With this structure, a very high transmission of -0.65 dB and a reflection of -16.48 dB can be achieved at 4.725 THz, with the real part of the refractive index equal to -1.9. The FOM of the structure is 89.43 which warrants the quality of the proposed structure for negative refractive index applications.


2. Proposed metamaterial structure

The proposed unit cell contains only a single SHR composed of a middle part and four arms made of gold (see Fig. 1). The thick-

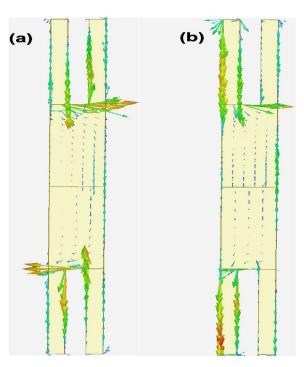


Fig. 1. Schematic of the unit cell of the proposed metamaterial with $d=5.2 \,\mu\text{m}$, $w = 1.6 \,\mu\text{m}$, $b=25 \,\mu\text{m}$, and $a=17 \,\mu\text{m}$.

ness of this semi-H-shaped element is $w = 1.6 \mu$ m. The width of the middle part of the SHR is $d = 5.2 \mu$ m, and its height $b = 25 \mu$ m. Each arm has a width $w = 1.6 \mu$ m and a height $a = 17 \mu$ m. For simplicity, we do not consider a dielectric substrate here, but in practice, this SHR can be embedded in a dielectric host medium. We take the lengths of the unit cell in the *x*- and *y*-directions as 65 and 15 μ m respectively. Therefore, the gap width between adjacent H-shaped elements along the *x*-direction is considered as 6 μ m. The structure is periodic along the *x*- and *y*-directions, while only a single layer is considered along the propagation direction. The propagation direction of the incident linearly polarized electromagnetic wave is along the *z*-direction, with the electric field polarization along the *x*-direction and the magnetic field component along the *y*-direction.

3. Numerical calculations and discussion

To investigate the electromagnetic response of the proposed metamaterial structure, we performed a set of finite element numerical method calculations using a commercial software package high frequency structure simulator (HFSS). We used only one unit cell of the structure, with appropriate periodic boundary conditions, in the x-y plane and only one unit cell along the propagation direction. Perfect electric boundaries and perfect magnetic boundaries were used in the x-direction (y-z plane) and the y-direction

Fig. 2. (a) Surface current distribution at a negative refractive index frequency of 4.725 THz. The antiparallel surface currents in both arms of the semi H-shaped element reveal the existence of a magnetic resonance. (b) Surface current distribution at a positive refractive index of 5.17 THz.

(x-z plane), respectively, to warrant the polarization of electric field along the arms of the SHR (along the *x* axis) and the polarization of magnetic field perpendicular to the plane containing the SHR (along the *y* axis). An electromagnetic wave was incident normal to the *x*-*y* plane, propagating in the *z*-direction. We used the Drude free electron model for the permittivity of gold

$$\epsilon(\omega) = 1 - \frac{\omega_p^2}{\omega^2 + i\omega\gamma}$$

where ω_p is the plasma frequency and γ is the collision frequency. The ω_p and γ values for gold were considered 1.37×10^{16} rad/s and 4.08×10^{13} rad/s, respectively [36]. Although, at high frequencies, noble metals are not as good as graphene and high- T_c superconductors, they are still the best candidates for conductors in metamaterials [36].

In the proposed structure, a negative real part of permittivity can be generated by the middle part and the arms of the semi Hshaped structure at frequencies below the plasma frequency, and a negative permeability can be generated by exciting a circular cur-

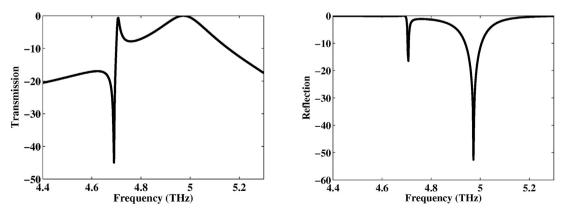


Fig. 3. Transmission and reflection amplitudes.

Download English Version:

https://daneshyari.com/en/article/7932770

Download Persian Version:

https://daneshyari.com/article/7932770

Daneshyari.com