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A B S T R A C T

The finite element method (FEM) based on the nonlocal Kirchhoff plate theory with second order strain gradient
is developed to derive the dynamic equations of nanoplate under thermal load with the small scale effect taken
into consideration. The characteristics of transmission and distribution of the steady-state energy flows in the
rectangular nanoplate are analyzed based on the structural intensity approach. In the numerical calculation, the
natural frequencies of single layer graphene sheets (SLGS) computed by nonlocal FEM agree well with theore-
tical results of nonlocal strain gradient plate theory, which validate the reliability of the present method. The
effects of nonlocal parameters, mechanical load and thermal load on structural intensity are considered. It can be
found that the small scale effect is not same for different applying positions and excitation frequencies. The
influence of mechanical load on vibration energy flow paths may be cancelled by thermal load, and the effect of
thermal load on vibration energy flow paths also may be cancelled by mechanical load. The critical thermal load
may be found to determine whether thermal load play a more important role in form energy flow of SLGS than
mechanical load.

1. Introduction

Nanoscale structures i.e., single layer graphene or nanoplates have
unique electronic properties and superior mechanical properties [1].
Many potential applications of nanostructures in nanoresonators, na-
nosensors and nanoelectromechanical systems are based on their vi-
bration characteristics [2–6]. Structural vibration is related with the
energy flow which mainly results from external load, such as thermal
load and mechanical load. At the same time, the graphene also exhibits
its good energy dissipation characteristics, and may be made the single
layer graphene heat dissipation film [7,8]. In order to control structural
vibration or improve energy dissipation characteristics, transmission
and distribution of energy flow in a nanostructure are desired. The
structural intensity approach is used to describe distribution of energy
flow in the nanostructure here.

Generally, atomistic modeling and nonlocal continuum modeling
are developed to analyze nanoplates. Nonlocal continuum modeling is
less computationally expensive than the atomistic modeling, and in
good agreement with atomistic modeling. Nonlocal elasticity mechanics
theory can be effectively employed to investigate vibration character-
istics of nanoplates. Pradhan and Phadikar [9] investigated double
layered nanoplates based on the Eringen's nonlocal continuum me-
chanics theory. Ansari et al. [10] used general differential quadrature
method to analyze vibration of single-layered graphene sheets based on
the Eringen's plate theory. Aksencer and Aydogdu [11] used Navier

type solution method to study forced vibration of nanoplates based on
the Eringen's plate theory. Zhou et al. [12] used a rigorous analytical
symplectric method to study double layered orthotropic nanoplate
based on the Eringen's plate theory. At the same time, nonlocal strain
gradient theory taken into consideration is also usually used to in-
vestigate nanostructure [13–25]. Papargyri-Beskou research team
[15–17] analyzed the dynamics of the beam and plate based on the
strain gradient theory, and these results may correctly describe dy-
namics behavior of nanostructure systems. In order to describe the ef-
fect of the nanostructure on mechanical properties, it is assumed that
nanostructure is made of nonlocal elastic material, where the stress
state at a given reference point depends not only on the strain of this
point, but also on the higher order gradient of strain so as to with the
influence of the long range forces of all other atoms. So strain gradient
theory may be regarded as a kind of nonlocal continuum mechanics
theory. Wang and Hu [18] studied flexural wave propagation in single-
wall carbon nanotubes based on the nonlocal beam theory with second
order strain gradient, and drew significant conclusions. Shahriari et al.
[21] analyzed the vibration of composite nanoplates using Mindlin's
strain gradient theory. Farajpour et al. [23] developed a new size-de-
pendent plate model based on the nonlocal strain gradient theory. Eb-
rahimi and Dabbagh [25] analyze the wave propagation response of
magneto-electro-elastic nanoplates via nonlocal strain gradient theory.
Finite element method (FEM) is more useful for complex structure
[26–28]. Obviously, vibration characteristics of the nanoplate
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structures have been studied in detail. However, to our knowledge, no
work on the structural intensity of nanoplate structures has been pub-
lished.

In the present work, the nonlocal Kirchhoff plate theory is used to
describe the motion of the graphene sheets. The frequency responses of
single layer graphene sheets are researched by the nonlocal FEM. The
structural intensity of the nanoplate structure with thermal load is in-
vestigated by the nonlocal strain gradient theory. The structural in-
tensity formulations for nanoplate with thermal load are obtained by
structural intensity approach. Furthermore, the effects of nonlocal
parameters, mechanical load and thermal load on structural intensity
are also investigated. It can be seen that thermal load play an important
role on making vibration energy flow patterns.

2. The constitutive law of the nanoplate structure with thermal
load

Thermoelastic strain-stress relations of the thin plate are expressed
as based on the Kirchhoff plate theory [29]

=
−

+ −
−

σ E
μ

ε με EαT
μ1

( )
1

,x x y2 (1)

=
−

+ −
−

σ E
μ

ε με EαT
μ1

( )
1

,y y x2 (2)

= =τ τ Gεxy yx xy (3)

where εx and εy are normal strains parallel to the x and y axes, re-
spectively, γxy the shear strain in the xy plane. E denotes Young's

modulus, μ Poisson's ratio, = +G E
μ2(1 ) , α linear thermal expansion

coefficient, and T x y z( , , ) the temperature rise of any point in the plate.
The strain gradient elastic theory assumes that the stress at a point is

a function of both strain and strain gradient at the same point, the
second-order strain gradient constitutive equation link with the mi-
crostructures can be expressed as [14,26]

= + ∇σ C ε g ε( ),ij ijkl kl kl
2 2 (4)

where σij is the stress tensor, Cijkl is the elastic tensor, εkl is the strain
tensor and g is the nonlocal material parameter.

The second order strain gradient constitutive equation for the na-
noplate structures under thermal load may be expressed as
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where nonlocal parameter g is a material parameter to reflect the ef-
fects of microstructures on the stress in the nonlocal elastic material and
given by Refs. [14,20]

=g d
12
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(8)

where d is the axial distance between two particles in the material.
Integrating along the nanoplate thickness direction, membrane

forces, bending moments and shear forces may be given based on strain
gradient elasticity.
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where ∫= − −M TzdzT
Eα

μ h
h

1 /2
/2 is equivalent bending moment of T ,

∫= − −N TdzT
Eα

μ h
h

1 /2
/2 equivalent membrane force of T ,

= −D Eh μ/12(1 )3 2 , h the thickness of the nanoplate. Obviously, T
varies through the thickness of the plate, or else =M 0T .

3. Finite element model of the nanoplate structure with thermal
load

Lagrange's equations are used to build finite element model of strain
gradient Kirchhoff plate with thermal load, and then the FEM based on
the nonlocal Kirchhoff plate theory with second order strain gradient is
developed to derive the dynamic equations of nanoplate with thermal
load.

Eqs (5)–(7) can be written in matrix form as
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So, element potential energy may be obtained by use of stress-strain

Table 1
Material properties.

Materials Yong's modulus E(Gpa) poisson's ratio μ Density ρ(kg/m3)

Graphene 1000 0.30 2237

Table 2
The natural frequencies (THz) of SLGS with simply supports.

Mode Analytical results Nonlocal FEM

(1,1) 0.0683 0.0682
(1,2) 0.1708 0.1701
(2,2) 0.2732 0.2709
(1,3) 0.3415 0.3393
(2,3) 0.4439 0.4382
(3,3) 0.6144 0.6026
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