## **Accepted Manuscript**

Optical properties and enhanced photocatalytic activity of Mg-doped ZnO nanoparticles

Anindita Samanta, M.N. Goswami, P.K. Mahapatra

PII: \$1386-9477(18)30801-4

DOI: 10.1016/j.physe.2018.07.042

Reference: PHYSE 13245

To appear in: Physica E: Low-dimensional Systems and Nanostructures

Received Date: 30 May 2018
Revised Date: 26 July 2018
Accepted Date: 31 July 2018

Please cite this article as: A. Samanta, M.N. Goswami, P.K. Mahapatra, Optical properties and enhanced photocatalytic activity of Mg-doped ZnO nanoparticles, *Physica E: Low-dimensional Systems and Nanostructures* (2018), doi: 10.1016/j.physe.2018.07.042.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



Optical properties and enhanced photocatalytic activity of Mg-

doped ZnO nanoparticles

Anindita Samanta<sup>a</sup>, M N Goswami<sup>b</sup>, P K Mahapatra<sup>c</sup>

<sup>a</sup>Department of Physics & Techno-Physics, Vidyasagar University, Midnapore-721102, West Bengal

<sup>b</sup>Department of Physics, Midnapore College, Midnapore-721101, West Bengal

<sup>c</sup>Department of Physics, ITER, SOA University, Bhubaneswar-751030, Odisha

**Abstract:** 

 $Zn_{1-x}Mg_xO$  (x = 0.0, 0.03, 0.06, 0.09, 0.12, 0.15) nanoparticles were synthesized by chemical precipitation

techniques using hydroxyoxalate type precursors. The XRD reveals hexagonal wurtzite structure in all the samples

with crystallite size between 33 to 35 nm. Grain Size and growth direction of lattice of the samples were determined

using High Resolution Transmission Electron Microscopy (HRTEM). The doping of Magnesium (Mg) into the ZnO

matrix in expected concentration was confirmed by Energy Dispersive X-ray (EDX) spectroscopy and Fluorescence

(FL) spectroscopy. Fluorescence (FL) spectra exhibit an enhanced excitonic peak at 360 nm relating to near band

edge emission for Mg doped ZnO nanoparticles. The enhancement of photocatalytic activity has been observed with

the increase of Mg concentration in ZnO nanoparticles.

Keywords: Mg doped ZnO nanopowder, HRTEM, Fluorescence, Photocatalysis.

Corresponding author: M N Goswami (makhanlal@gmail.com, +91- 9732730573)

## Download English Version:

## https://daneshyari.com/en/article/7933025

Download Persian Version:

https://daneshyari.com/article/7933025

<u>Daneshyari.com</u>