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We propose extending Bohmian mechanics (BM) with the moving particle semi-implicit method, a particle
method for uncompressed fluids. The application of this method prevents the node of the Bohm quantum po-
tential from breaking numerical calculations while maintaining a low calculation cost. We validated our ex-
tended method by comparing our results with those from the conventional method for a one-dimensional har-
monic oscillator, Gaussian barrier and rectangular barrier. The proposed method was found to simulate the
temporal changes in the probability density for a rectangular barrier. In addition, the relational equation ob-

tained by this method reveals an interesting correspondence between the pressure of a classical fluid and the

Bohm quantum potential.

1. Introduction

Quantum wave packet dynamics methods have been used to un-
derstand dynamical phenomena with quantum effects across a wide
range of fields in chemistry and physics. Quantum wave packet dy-
namics simulations rely on solving the time-dependent Schrodinger
equation (TDSE) using numerical methods, namely, the Euler method,
the Fourier method, and the perturbation method. In 1999, the
quantum trajectory method (QTM) was proposed by Wyatt [1,2] as a
quantum wave packet dynamics method. The QTM is a numerical
method based on a hydrodynamic formulation of quantum mechanics,
which was first proposed by Madelung [3] and de Broglie [4] and
subsequently developed as Bohmian mechanics (BM) by Bohm [5,6]. In
contrast to the conventional methods, the QTM can be simulated in
Lagrange coordinates. As the use of Lagrange coordinates allows the
coordinate grids to be moved, rather than being fixed, the QTM affords
the following advantages: (1) the calculation cost can be reduced be-
cause the frame of interest can be extracted, (2) it is not necessary to
consider boundary conditions because the grids move during the cal-
culations, and (3) hydrodynamic algorithms can easily be adapted.

BM is derived by assuming that the wave function is described by a
polar form and substituting it into the TDSE. The equations derived are
identical in form to the classical Hamilton-Jacobi equation, but also
incorporate the Bohm quantum potential. The Bohm quantum potential
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is known to be the source of the quantum force, and as such, it is a
useful term for understanding quantum mechanics.

Since the QTM is interesting from the standpoints of both theory
and numerical calculations, many researchers have attempted to de-
velop BM. For example, Tannor and co-workers [7,8] proposed a BM
framework referred to as “Bohmian mechanics with complex action”
(BOMCA) by reformulating BM in complex space. Many approaches
based on BOMCA have subsequently been reported, such as the devel-
opment and improvement of the QTM [8-16], its expansion to adiabatic
and diabatic forms [17,18], and its application to electronic quantum
motions [19], slit experiments [20], quantum dot [21], and the pho-
todissociation dynamics [22]. Furthermore, approaches to solving the
Schrédinger-Langevin equation using the QTM [23-25] and adapting
the QTM to general physical problems [26-30] have also attracted at-
tention over the last few years.

However, it is known that the node of the Bohm quantum potential
breaks the numerical calculation of the QTM. This problem has been
resolved in a number of different ways, including incorporating artifi-
cial viscosity into the QTM [31-36], the covering function method
[37,38], the bipolar decomposition approach [39-44], the phase space
method [45], and the selection of transmitted trajectories for the scat-
tering problem [46,47]. However, the optimal treatment of the Bohm
quantum potential remains an open question.

In this study, to prevent the node of the Bohm quantum potential
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from breaking the numerical calculations of the QTM, we focus on the
so-called “moving particle semi-implicit” (MPS) method [48-50] for
uncompressed fluids, a type of particle method used in hydrodynamics
that was recently proposed by Koshizuka and co-workers. By using the
MPS method, we can adapt the gradient and Laplacian models to the
QTM and directly calculate the gradient of the Bohm quantum potential
without differentiation of the probability density. Thus, we derive the
“Bohmian mechanics on particle formulation” (BOMPF) method by
adapting MPS to BM. In addition, we find an interesting correspon-
dence: the Bohm quantum potential behaves very similarly to classical
pressure.

In Section 2, we describe the proposed new method for adapting
MPS to BM. In Section 3, we determine the initial conditions necessary
for the numerical calculation and validate this method using one-di-
mension harmonic oscillator, Gaussian barrier, and rectangular barrier
systems. Section 4 presents our conclusions.

2. Theory
2.1. Hydrodynamic formulation of quantum mechanics

Conventional BM is formulated using the polar form of the wave
function:

P(x, t) = Jplx, t)exp(%s(x, t)), o

where p(x, t) is the probability density, S(x, t) is the action function of
a real number, i = +/—1, and # is the reduced Planck constant. By in-
serting the ansatz into the TDSE and separating the result into real and
imaginary parts, we obtain two equations:
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In these equations, m is the mass, V is the classical potential, and Qg is
the Bohm quantum potential:

n ViJp
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Eq. (2) is a continuity equation. Eq. (3) is a quantum Hamilton-Jacobi
equation (QHJE), which is identical in form to the classical Ha-
milton—-Jacobi equation but also includes the Bohm quantum potential.
We transform from the Euler frame to the Lagrange frame by using the
following equation:
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where v = VS/m is the flow velocity. Substituting Egs. (2) and (3) into
Eq. (5) yields the following Lagrange equations:
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where fq = —VQg and f, = —VV represent the quantum and classical

forces, respectively. Since Egs. (6) and (7) resemble the formulations
used in classical hydrodynamics, the quantum trajectories can be cal-
culated by selecting and adapting the appropriate techniques from
computational fluid dynamics (CFD). This method is the QTM, and it
can be applied to various systems in combination with the derivative
propagation method [51] and the arbitrary Lagrangian-Eulerian
method [52].
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2.2. Bohmian mechanics on particle formulation

In this study, we focus on the MPS method for uncompressed fluids,
which is a particle method used in CFD, and adapt it to BM. The most
fundamental definition for uncompressed fluids in the particle method
is
o

=—p, Vv =0.
dt P

(8)

This equation implies that the probability density p, of each particle
i is always constant. Instead, we introduce the particle number density
n;(x) for each particle i, which enables the calculation of the probability
density as a function of the coordinate:

ni(x) = Z Wo ) (1),

i#i C)
where the subscripts i and j denote each particle, r; = |r; — 1| is the
interparticle distance between i and j, and w is the weight function with
respect to 1. The subscript of each weight function denotes the physical
quantity expressed by that weight function. In this study, to describe
the probability density p(x) as a function of the coordinate, the Bohm
quantum potential Qp, and the gradient of the Bohm quantum potential,
we use the following weight functions:

W) (1) = a1 exp(—ay 1), (10)
wo (1)) = a3 exp(—asny)exp(—asn?)exp(—ast;®), 11)
w, (1) = a7 exp(—asr?), (12)

where a; to ag are arbitrary constants. The use of a weight function
allows the introduction of an influence area r, to eliminate the influence
of particles that are separated from each other. Thus, unnecessary
calculations can be avoided, which reduces the calculation cost as well
as preventing the node of the Bohm quantum potential from breaking
the numerical calculations. The values of a and r, will be determined in
Section 3.

It is known that the probability density p*(x) and the particle
number density n* (x) are related via the following equation [53]:
pFx) —p° ) —n®
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where the superscript k represents the time step, n° is the standard
particle number density, and p° is the standard fluid density.

We can then rewrite the QHJE on Lagrange coordinate in Eq. (7).
Since 7 is the source of quantum effects, all of the quantum effects of a
system are concentrated in the Bohm quantum potential Qp. Thus, we
can separate Eq. (7) into a classical mechanics component and a
quantum mechanics component:

v(t+a)—v(t)
at B

classical mechanics component: m -Vv
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quantum mechanics component: m

(15)

where «a is the time affected by VV. Naturally, if we take the limit as
h — 0, Qp and a become zero. Thus, the wave packet behaves like a
classical fluid. Differentiation of both sides of Eq. (15) affords the fol-
lowing equation:

va(t +a)

= V2Qy,
ar Qp

(16)
where we used Vv (t) = Vv(t + dt) = 0 derived from Eq. (8). For time
t + a, the probability density is not constant because Vv changes only
with the classical potential. Therefore, Eq. (16) has the effect of making
the probability density constant again. Then, taking the time difference
of Eq. (6) gives
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