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A B S T R A C T

For electrons above a superfluid helium film suspended on a specially designed dielectric substrate, z= h(y), we
obtain that both the transverse, along z, and the lateral, along y, quantizations are strongly enhanced due to a
strong mutual coupling. The self-consistent quantum wires (QWs) with non-degenerated one-dimensional
electron systems (1DESs) are obtained over a superfluid liquid helium (LH) suspended self-consistently on dif-
ferent dielectric substrates with a nanoscale modulation. A gap ≳10meV (≳1meV) is obtained between the
lowest two electron levels due to mainly the transverse (lateral) quantization. Our analytical model takes into
account a strong interplay between the transverse and the lateral quantizations of an electron. It uses that the
characteristic length (energy) along the former direction is essentially smaller (larger) than the one along the
latter, in a close analogy with the adiabatic approximation.

1. Introduction

Since pioneering works [1–3] quantized states of electrons above LH
suspended on different substrates are the subject of a strong ongoing
interest [4–23]. Electrons floating on LH have been proposed for
quantum computing in a seminal work Ref. [10]. For a plane substrate
and a large thickness of LH film, d ≳ 0.5 μm, any effect of the substrate
is negligible [4,6]. This allows a two-dimensional electron system
(2DES) on a bulk LH and a single electron on a bulk film [10] with a 1D
hydrogenic spectrum [4–6,10] = −E R m/m

H1 2. Here R≈ 8 K is an ef-
fective Rydberg energy. For quantum computing in Ref. [10] it is sug-
gested to patten the bottom electrode with features spaced close to d
(≈0.5 μm). So that each feature traps one electron. Metallic posts
submerged by the depth ∼0.5 μm, beneath practically plane helium
surface, are suggested [12]. They form quantum dots for electrons on
LH which may serve as the qubits of a quantum computer [12], in
particular, at temperature T≈ 10mK [10,12]. Surface electrons with
band-type spectrum on LH over metallic periodic substrate of the dif-
fraction grating type are proposed by Ginzburg and Monarkha [7].
Where an amplitude of modulation is much smaller than d and a free
surface of LH is assumed as flat.

Electrons in a micron-scale and a nanoscale channels filled by ca-
pillary action with LH [5,8–10,13–23] attract recently much attention,
in particular, due to their high potential in creating qubits with the
needed properties of performance. The systems of such channels are

promising for construction of the equivalent of a charge-coupled device
(CCD) [24] that, in addition, will allow the large scale transport of
qubits [15,16,19]. In interesting experiments of Refs. [16,19] electrons
are studied in the channels of a width ≳3 μmat T≈ 1.5 K. Theoretical
framework of Refs. [16,19] treats electrons mainly as ones above a bulk
LH.

Indeed, usually some important characteristics of electrons in these
channels such as a gap between the lowest electron levels of the
transverse (lateral) quantization, a form of the lateral potential, a form
of the LH surface, a lateral density profile, etc. are not well known
[5,8,9,14–17,19–23]. In particular, due to absence of interplay and self-
consistency between transverse and lateral quantizations within used
theoretical frameworks.

In present study self-consistent 1DESs in QWs over LH suspended on
different nanoscale dielectric substrates are obtained, for T=0.6 K. A
strong interplay between the quantizations of an electron along z and y
directions is treated within present approach. It uses, in particular,
some analogies with well known adiabatic approximation [25]. In
Fig. 1 the sketch of a geometry of studied model is shown. We consider
that a dielectric substrate is periodic along the y-direction with a finite
period ΔLy (unless otherwise stated) and Lx →∞. Within the main super
cell (Lx× ΔLy; |y|≤ ΔLy∕2) the substrate profile z= h(y) is assumed as
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where h1, a, ΔLy are the characteristic scales of its modulation, cf. Fig. 1.
We assume that 2h1∕a ≪ 1. I.e., a substrate profile is smooth.

For obtained systems of QWs, within the main super cell a 1DES is
laterally localized at y=0, cf. Fig. 1. Point out that effect of tunnel
coupling between 1DESs of neighboring super cells is negligible for
present systems of QWs. We have obtained a strong “long-range” effect
of ΔLy on the properties of a self-consistent 1DES at the region 10 μm ≥
ΔLy ≥ 1 μm. For a given linear density within a super cell nL=Ntot∕Lx;
Ntot is the total number of electrons within a super cell. It is related with
an essential dependence of LH profile within this region. That induces a
strong modification of the transverse and the lateral quantizations for
an electron. In particular, an essential modification of the effective
electron potential is obtained due to a strong change for the image
potential of substrate.

Notice, for ΔLy ≳ 50 μm properties of a self-consistent 1DES become
practically independent of ΔLy. In present figures we assume that
ΔLy=1 μm or 10 μm. Then obtained results can be applied to the
properties of QWs within a finite region |y| ≤ Ly∕2, with Ly ≥ ΔLy, if
the substrate have a finite region of periodic modulation |y| ≥
Ly∕2 + 25 μm.

In Subsection 2.1 we present a self-consistent Hamiltonian of an
electron on a self-consistent LH film, suspended over a dielectric sub-
strate with a nanoscale lateral modulation. In Subsection 2.2 we give
the rest of a self-consistent framework for our model. It defines a self-
consistent profile of LH suspended on the dielectric substrate, for a
given linear density within a super cell. In Section 3 we present results
and discussions on the self-consistent profiles of LH films suspended on
the special dielectric substrates, the lowest levels of the transverse and
of the lateral quantizations, a self-consistent electron density n(y) pro-
files of 1DESs in obtained self-consistent electron nano-channels. Con-
clusions follow in Section 4.

2. Self-consistent model of electrons over liquid helium on a
substrate with nanoscale modulation

2.1. One-electron Hamiltonian

We consider that between a surface of LH, z= ξ(y), and the surface
of substrate, z= h(y), Eq. (1) a LH film is formed of the thickness d
(y)= ξ(y)− h(y) > 0. First we assume that ΔLy → ∞, later on we will
show how our study can be extended to a finite ΔLy. Then the wave
functions and the eigenvalues of an electron over LH are defined by the
Schrodinger equation [5,6,14]
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where three quantum numbers β={kxβ, nyβ, nzβ} are given by the wave
number kxβ=2πnxβ∕Lx and two integer quantum numbers nyβ=1, 2,
3, …, nzβ=1, 2, 3, …. As we assume the Born-von Karman boundary
condition along x, we have nxβ=0,± 1,± 2, …. In Eq. (2), e.g., fol-
lowing Refs. [5,6,14], we have that
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where Λ= e2(ɛLH− 1)∕[4(ɛLH + 1)] and Λ1= e2(ɛS− 1)∕[4(ɛS + 1)].
Here ɛLH≈ 1.054 is the dielectric constant of LH, ɛS is the dielectric
constant of substrate, and Ep is an external (also called as holding)
electric field. The first two terms in the right hand side of Eq. (3) re-
present the main contributions to the image potential energy [6]. The
former term represents the image potential energy due to a bulk LH and
the latter one shows a main effect of the substrate (for an infinite
thickness of a LH film it is nullified).

Point out, Eq. (3) can be considered as exact if ξ(y) and h(y) are the
linear polynomial functions of y or independent of y. For more complex
dependences of ξ(y) and h(y) on y, Eq. (3) is valid if h(y) is smooth
enough within an actual region. Where an electron is present mainly.
This justifies the second term in Eq. (3). Further, the first term in Eq. (3)
is readily justified due to a smoother ξ(y) than h(y) and closer average
position of an electron along z to the characteristic boundary. Here it is
the LH surface ξ(y). I.e., in Eq. (3) an electron image potential is well
approximated by the first two terms of the right hand side provided the
distance between the electron and the dielectric is small relative to the
curvature of the dielectric surface.

As potential Eq. (3) is independent of x we look for a solution of Eq.
(2) as follows
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Then from Eq. (2) we obtain
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To solve Eq. (5) we develop an approach similar with the well
known adiabatic method [25], that separates a fast movement of
electrons from a slow movement of nuclei, to separate a fast movement
along z-axis, on a short space scale Δz, from a slow movement along y-
axis, on the scale Δy ≫ Δz. We assume that

=ψ z y y φ z y( , ) Φ ( ) ( , ),n n n n,zβ yβ yβ zβ (6)

where φ z y( , )nzβ
is a real function (this condition always can be satisfied

as it is a discrete spectrum state; nzβ=1, 2, …) that satisfies
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where y has the role of a parameter. Then, substituting Eq. (6) in Eq. (5)
and using Eq. (7), we obtain
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As a wave function of discrete spectrum =φ z y( , ) 0nzβ
, for z≤ ξ(y), and

it is localised at z≈ ξ(y) (e.g., within a few nanometers from the LH
surface for typical conditions of below Figs. 2–11), we obtain from its
normalization
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after applying ∂∕∂y, that
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Then multiplying Eq. (8) by φ z y( , )nzβ
and integrating over z, ∫−∞

∞ dz,

Fig. 1. A sketch, not to scale, of a model geometry. Substrate surface z= h(y),
LH surface z= ξ(y), and LH thickness d(y)= ξ(y)− h(y).
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