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A B S T R A C T

In this work we study the propagation of Dirac electrons through Cantor-like structures in graphene. In concrete,
we are considering structures with magnetic and electrostatic barriers arrange in Cantor-like fashion. The Dirac-
like equation and the transfer matrix approach have been used to obtain the transmission properties. We found
self-similar patterns in the transmission probability or transmittance once the magnetic field is incorporated.
Moreover, these patterns can be connected with other ones at different scales through well-defined scaling rules.
In particular, we have found two scaling rules that become a useful tool to describe the self-similarity of our
system. The first expression is related to the generation and the second one to the length of the Cantor-like
structure. As far as we know it is the first time that a special self-similar structure in conjunction with magnetic
field effects give rise to self-similar transmission patterns. It is also important to remark that according to our
knowledge it is fundamental to break some symmetry of graphene in order to obtain self-similar transmission
properties. In fact, in our case the time-reversal symmetry is broken by the magnetic field effects.

1. Introduction

In nature many peculiar features of certain phenomena are observ-
able only under special conditions. For instance, recently by break-
ing either the time-reversal symmetry or the inversion symmetry novel
materials such as topological insulators [1–3], Dirac semimetals [4,5],
Weyl semimetals [6,7] and materials with special charge carriers like
Kane electrons [8,9] have arisen. Then, the set of symmetries in a mate-
rial (chiral symmetries) and specially its breaking (chiral symmetry
breaking) can give rise to unprecedented materials with exotic prop-
erties. In fact, in graphene it has been shown that chiral symmetry
breaking can change the character of the material from a semimetal
to a strong insulator [10]. Even a metallic or superconducting phase
can be induced by breaking some particular chiral symmetry. Actually,
if we take into account the variety of 2D materials available today as
well as the symmetry-breaking possibilities the opportunities for exotic
materials are superb.

On the other hand, the two-dimensional nature of graphene consti-
tutes an unprecedented platform to study the transmission and trans-
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port properties in special (self-similar) geometries such as those that
can be constructed using the Sierpinski carpet, Cantor set, Koch curve,
etc. In principle, these peculiar geometries can be obtained by nanos-
tructuring the material. In fact, it is possible to obtain potential pro-
files with self-similar characteristics. Even, the profiles can have scal-
ing in both the spatial and energy axis. These self-similar potential pro-
files were originally proposed in the context of semiconductor quan-
tum wells [11,12]. Actually, in graphene we have several mechanisms
to nanostructuring. Among the most relevant ones we can find those
based on metallic electrodes [13–16], interacting substrates [17–20],
strain [21–23] and ferromagnetic gates [24–31]. All these mechanisms
modify the fundamental properties of graphene. For instance, if we have
graphene on an interacting substrate such as SiC or hBN the dispersion
relation is modified and most importantly a bandgap is induced. The
interaction of the graphene sheet with the substrate breaks the intrinsic
sublattices symmetry in graphene and consequently a bandgap opening
arises. In addition, as a result of the symmetry breaking the pseudo-spin
is not longer conserved as well as Klein tunneling is prevented [32,33].
In the case of metallic and ferromagnetic gates the associated electric
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Fig. 1. (a) Schematic representation of the
top view of a Cantor-like graphene-based
structure under magnetoelectric effects.
Graphene is placed on a non-interacting
substrate like SiO2 (shaded blue area). The
magnetoelectric strips (MESs) are incorpo-
rated on top of graphene to tune the dis-
tribution and shape of the magnetic and
electric fields applied perpendicularly to
graphene and consequently the profile of
magnetoelectric barriers. (b) Correspond-
ing vector and scalar potential profiles for
(a). The deltaic magnetic field is depicted
as up and down arrows. (For interpretation
of the references to colour in this figure leg-
end, the reader is referred to the Web ver-
sion of this article.)

and magnetic fields shift the graphene’s Dirac cones in the energy and
wavevector axis, respectively. In the case of the magnetic field, it also
breaks a fundamental symmetry, specifically the time-reversal symme-
try.

Under this context, the relativistic character of the charge carri-
ers in graphene, the exotic properties that can arise due to the break-
ing of symmetries and the special geometries that can be imposed to
graphene and other 2D materials by nanostructuration can confabu-
late to give place to unprecedented transmission and transport prop-
erties. In fact, in recent years, self-similar transmission and transport
in graphene Cantor-like structures have been reported [34–37]. The
self-similar transmittance and conductance patterns found obey well-
defined scaling rules, that is, the patterns for different sizes of the sys-
tem can be connected. The size of the system in the energy and spatial
coordinates can be controlled by the generation and effective width of
the system as well as the height of the barriers. Actually, the scaling
rules correspond to precisely those parameters. Other important aspect
to remark is that in order to obtain the mentioned self-similar pat-
terns it is fundamental that the sublattices symmetry be broken, which
correspond to structures with interacting substrates. Because as far as
we have corroborated the self-similar characteristics are not present
in structures in which the sublattices symmetry is preserved [35], i.e.
structures in which the energy barriers are generated with metallic elec-
trodes.

In this work, we study the transmission properties of graphene
Cantor-like structures. In concrete, we explore the consequences of
breaking the time-reversal symmetry. In order to induce the time-
reversal symmetry breaking and at the same time obtain a self-similar
(Cantor-like) structure we have considered that the energy barriers that
composed the structure are generated by magnetic and electric fields.
The magnetic field assures us the breaking of the time-reversal sym-
metry. The Dirac-like equation and the transfer matrix approach are
implemented to describe the charge carriers and to obtain the trans-
mission properties, respectively. We obtain that once the magnetic field
is incorporated the transmission patterns show self-similar characteris-
tics. Even more important, we obtain scaling rules that can describe the
self-similar transmission patterns at different scales. To our knowledge
this is the first time that scaling rules are reported under magnetic field
effects.

2. Methodology

Our Cantor-like structure is composed of a graphene sheet placed
on a non-interacting substrate like SiO2. Magnetoelectric strips are con-
sidered as top gates in order to generate the magnetic and electrostatic
(magnetoelectric) potential barriers along the structure, see Fig. 1. In
fact, ferromagnetic strips were successfully deposited on semiconduc-
tors heterostructures [38] and constitute one of the main proposals to
obtain magnetic barriers in graphene [28]. So, in principle, the strips

allow us to induce different profiles for the magnetoelectric barriers. In
our specific case we are considering step-wise scalar and vector poten-
tial barriers, Fig. 1 (b). These barriers are arranged according to the con-
struction rules of the Cantor set in order to obtain our self-similar struc-
ture. A schematic representation (top view) of our Cantor-like structure
is shown in Fig. 1 (a). The blue region and the orange stripes represent
the SiO2 substrate beneath the graphene sheet and the top magneto-
electric gates, respectively. Under these conditions we are dealing with
two different regions corresponding to those without and with magne-
toelectric barriers. The physics in these regions can be described by the
corresponding Dirac-like equation. In fact, the Hamiltonian that corre-
sponds to regions with magnetoelectric barriers is given by:

H = vF𝝈 · (𝐩+ e𝐀) + V(x)𝜎0, (1)

where 𝝈 = (𝜎x, 𝜎y) are the Pauli matrices, p = (px, py) = iℏ∇ is the
momentum operator, vF is the Fermi velocity of the Dirac electrons
in graphene, 𝐀 = (0,Ay,0) is the vector potential given in the Landau
gauge, V(x) is the scalar potential and 𝜎0 is the 2 × 2 unitary matrix.

For this particular problem, we have introduced the dimensionless
quantities, lB =

√
ℏ∕eB0 and E0 = ℏvF∕lB that refer to the strength and

length of the magnetic field as well as the unit of energy, respectively.
Here, B0 is a magnetic field of reference that help us to define the basic
units of energy and length. In all our numerical calculations a typical
realistic value of B0 = 0.1 T is used, with lB = 811 Å and E0 = 7.0 meV
[39]. Then, 𝐀(x) = Ayŷ = B(B0)lBŷ and V(x) = U0 are defined as the
vector and scalar potentials. The magnetic field B comes in terms of
B0. By solving the Dirac-like equation that corresponds to Eq. (1) it is
possible to obtain the following dispersion relation:

E = U0 ±
√
ℏ2v2

Fq2
x + v2

F(ℏqy + eAy)2, (2)

the ± signs correspond to electrons and holes, respectively. Moreover,
the wavefunctions take the form:

𝜓±(x, y) =
1√
2

(
1

v±

)
e±iqxx+iqyy , (3)

with

v± =
ℏvF

(
±qx + i

(
qy +

e
ℏ

Ay

))
E − U0

. (4)

In addition, the wave vector in the propagation direction comes as:

qx = 1
ℏvF

√
(E − U0)2 − v2

F(ℏqy + eAy)2. (5)

In contrast, for regions without magnetic field the Hamiltonian come
as:

H = vF(𝝈 · 𝐩), (6)
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