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A B S T R A C T

The electron-electron scattering increases the resistance of ballistic many-mode channels whose width is smaller
than their length. We show that this increase saturates in the limit of infinitely long channels. Because the
mechanisms of angular relaxation of electrons in three and two dimensions are different, the saturation value
of the correction to the resistance is temperature-independent in the case of three-dimensional channels and is
proportional to the temperature for two-dimensional ones. The spatial behavior of electron distribution in the
latter case is described by an unusual characteristic length.

1. Introduction

Though the electron-electron scattering does not directly contribute
to the electrical resistance in the absence of umklapp processes [1], it
affects the current in small-size conductors. In particular, it leads to
a minimum in the temperature dependence of the resistance [2] of a
wire with diffusive boundary scattering due to the electronic analogues
of Knudsen [3] and Poiseuille effects. The latter represents a decrease
of resistance with increasing temperature due to decreasing viscosity
of the electron liquid and is also known as the Gurzhi effect [4]. A
similar decrease of resistance was obtained later for 2D constrictions
with viscous electron flow [5], where the electron-electron scattering
serves as a ”lubricant” for the rough boundaries of the conducting area.
The electron-electron scattering results in the decrease of the resistance
even for contacts with smooth boundaries because it changes the tra-
jectories of electrons and may prevent them from passing through the
constriction or help them to get through it [6,7]. This decrease was
experimentally observed in several papers [8,9].

As the electron-electron collisions conserve the total momentum of
electrons, they may affect the conductance only in the presence of a
spatial inhomogeneity that absorbs or provides the extra momentum.
In the above cases, this inhomogeneity was represented by the hard
boundaries of the conducting area, but the extra momentum may be
also absorbed by the electron reservoirs at the ends of any conducting
system of a finite size. This suggests that the electron-electron scatter-
ing may affect the current in finite-length conducting channels even in
the case of a specular reflection from the walls. Recently, the correction
to the conductance of a narrow multichannel ballistic conductor was
calculated for the weak electron-electron scattering [10]. This correc-
tion appeared to be negative and resulted from pairwise collisions that
changed the number of electrons moving to the right and to the left, i.
e. whose projection of the velocity on the channel axis was positive or

negative (see Fig. 1). In any dimension higher than 1, these collisions
are allowed by the conservation laws. If an electron originating from
one of the reservoirs is scattered back into the same reservoir, it does
not contribute to the current and hence the resistance of the channel
increases [11].

As the calculations in Ref. [10] were performed in the lowest
approximation in the electron-electron scattering, the resulting correc-
tion to the conductance was proportional to the length of the channel.
However, it was not clear whether the conductance tends to zero with
increasing length of the channel or stops to decrease at some finite
value. The purpose of the present paper is to calculate the correction to
the conductance in the limit of strong electron-electron scattering.

The correction to the electric current is determined by the angu-
lar relaxation of electron distribution, which is essentially different
in three-dimensional (3D) and two-dimensional (2D) electron gases
[12,13]. The 3D relaxation is dominated by small-angle scattering and
therefore all angular harmonics, both odd and even, decay with the
same characteristic time. In contrast to this, the 2D relaxation has a sig-
nificant contribution from large-angle scattering that results from col-
lisions of electrons with almost opposite momenta, and this results in
strongly different relaxation times of the symmetric and antisymmetric
parts of the distribution function in the momentum space. The angu-
lar relaxation of the symmetric part in the 2D case is determined by
the collisions of electrons with almost opposite momenta, which rotate
the pair of excess electrons in the momentum space about the origin,
and results in the relaxation rate proportional to T2. In the case of the
antisymmetric part, an excess electron on one side of the Fermi surface
has no pair on its opposite side, and therefore this mechanism does not
work. Instead the relaxation of this part proceeds through small-angle
scattering and its rate is proportional to T4, which is much smaller than
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Fig. 1. A collision of two electrons that changes the number of right-movers. One of the
right-movers is converted into a left-mover despite the momentum conservation.

T2 at low temperatures. Because the odd and even angular harmonics
of the electron distribution are coupled in a spatially inhomogeneous
system, determining the temperature dependence of the correction to
the conductance of the 2D channel is an interesting question.

The calculation of the correction to the conductance of a long chan-
nel presents a nontrivial mathematical problem that cannot be solved
by standard methods of kinetic theory. The first reason is that the cal-
culation of the current involves a large number of angular harmonics
of the electron distribution and not only the lower ones as in bulk con-
ductors. The second reason is that the electron distribution exhibits a
different behavior in different portions of the channel. While it is almost
constant in its middle part, it sharply changes near its ends, and it is dif-
ficult to describe its spatial dependence using the same approximations
everywhere. To overcome these difficulties, a custom semi-analytical
approach is used in this paper.

The paper is organized as follows. In Sec. 2 we present the model
and basic equations, in Sec. 3 we perform calculations for the 3D case,
and Sec. 4 presents calculations for the 2D case. In Sec. 5 we discuss the
results in terms of physics, and Sec. 6 presents the summary. Appendices
contain more details of calculations.

2. Model and basic equations

Consider a metallic wire of a uniform cross-section that connects
two electronic reservoirs. We assume that the length L of the wire is
much larger than its transverse dimensions, and these dimensions are
much larger than the Fermi wavelength. There are no impurities in the
wire, and the boundaries are assumed to be absolutely smooth so that
the electrons are specularly reflected from them and their longitudinal
momentum is conserved. The narrowness of the channel allows us to
neglect the effects of electron-electron scattering outside the channel
because they are proportional to the number of transverse quantum
modes squared [6].

The distribution function of electrons in the channel obeys the Boltz-
mann equation

𝜕f
𝜕t

+ v 𝜕f
𝜕r

+ eE 𝜕f
𝜕p

= Îee, (1)

where E = −∇𝜙 is the electric field and the electron–electron collision
integral Îee is given by

Îee(p) = 𝛼ee 𝜈
−2
d ∫

ddk
(2𝜋)d ∫

ddp′
(2𝜋)d ∫ ddk′

× 𝛿(p + k − p′ − k′) 𝛿(𝜀p + 𝜀k − 𝜀p′ − 𝜀k′ )

×
{
[1 − f (p)] [1 − f (k)] f (p′) f (k′)

− f (p) f (k) [1 − f (p′)] [1 − f (k′)]
}
, (2)

𝛼ee is the dimensionless interaction parameter, d = 2 or 3 is the dimen-
sionality of the system; 𝜈3 = mpF∕𝜋2 and 𝜈2 = m∕𝜋 are the three- and
two-dimensional two-spin electronic densities of states (ℏ = 1). The
assumption of momentum-independent interaction parameter is valid if
the screening length of the electron-electron interaction is sufficiently
short. This can be ensured by a high enough concentration of electrons
in the 3D case or by a close electrostatic gate in the 2D case. The current
through an arbitrary section of the conductor is given by an integral
over the transverse coordinates

I = 2e∫ dd−1r⊥ ∫
ddp
(2𝜋)d

vx f (p, x, r⊥). (3)

Because of the condition EF ≫ max(eV,T) one may treat the electron
velocity near the Fermi surface as energy independent and set v = vFn,
where n is a unit vector in the direction of p. It is possible to avoid
solving the Poisson equation for the electric potential 𝜙 if one replaces
p as the argument of f by n and the energy variable 𝜀 = 𝜀p + e𝜙(r) − EF .
With the new variables, the term with electric field drops out from Eq.
(1), and it takes up the form

𝜕f (n, 𝜀, r)
𝜕t

+ v 𝜕f
𝜕r

= Îee{f}∣n,𝜀,r . (4)

The boundary conditions for this equation at the left and right ends of
the channel are

f (𝜀, nx > 0, x = 0) = f0 (𝜀− eV∕2) , (5)

f (𝜀, nx < 0, x = L) = f0 (𝜀+ eV∕2) , (6)

where x is the longitudinal coordinate, V is the voltage drop across the
channel, and f0(𝜀) = 1∕[1 + exp(𝜀∕T)] is the equilibrium Fermi distri-
bution function.

Because we are interested in the electric current, the angular relax-
ation of electrons will be of primary importance to us. As the physics of
this relaxation is essentially different in 3D and 2D electron gases, one
has to make the different approximations for these cases, and in what
follows we treat them separately.

3. 3D channel

In the case of a 3D channel, the angular relaxation is dominated by
small-angle scattering |Δp|≪ pF , and therefore all angular harmonics
have nearly the same relaxation time 𝜏−1 ∼ T2∕EF [12,14]. The excep-
tions are the spherical harmonics with l = 0 and l = 1, which have zero
relaxation rates because of the particle-number and momentum conser-
vation laws. We assume that the channel is cylindrically symmetric and
linearize Eq. (4) with respect to the voltage drop assuming eV ≪ T by
a substitution [15]

f (n, 𝜀, x) = f0(𝜀) + f0 (1 − f0) 𝜓(x, n), (7)

where x is the longitudinal coordinate and 𝜓(x, n) describes the angular
distribution of electrons. As the relaxation of all angular harmonics with
l > 1 may be approximately described by a single characteristic time
𝜏, one may subtract the harmonics with l < 2 from 𝜓 in the collision
integral and write down Eq. (4) for 𝜓 in the form

vx
𝜕𝜓
𝜕x

= −1
𝜏
(𝜓 − 𝜓 − 𝜓1), (8)

where 𝜓 and 𝜓1 are the zero and first harmonics of 𝜓 given by the
angular integrals

𝜓(x) = ∫
dΩ
4𝜋

𝜓(x, 𝜃), (9)

𝜓1(x, 𝜃) = 3 cos 𝜃 ∫
dΩ′

4𝜋
cos 𝜃′ 𝜓(x, 𝜃′), (10)
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