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A B S T R A C T

Mathieu’s equation has many applications throughout theoretical physics. It is especially important to the theory of Josephson junctions, where it is equivalent
to Schrödinger’s equation. Mathieu’s equation can be easily solved numerically, however there exists no closed-form analytic solution. Here we collect various
approximations which appear throughout the physics and mathematics literature and examine their accuracy and regimes of applicability. Particular attention
is paid to quantities relevant to the physics of Josephson junctions, but the arguments and notation are kept general so as to be of use to the broader physics
community.

1. Introduction

Mathieu’s equation,

d2𝜓
dz2 + (a − 2𝜂 cos(2z))𝜓 = 0. (1)

has appeared in theoretical physics in many different contexts. Mathieu
originally formulated the equation to describe the vibration modes of
an elliptical membrane [1], but the equation has since been applied
to the theory of quadrupole ion traps [2–4], ultracold atoms [5] and
quantum rotor models [6,7]. This equation has also found attention as
a simplified model of a particle moving in a periodic potential [8].

Although Mathieu’s equation is easy to solve numerically, and
although exact results are achievable in certain limits, a general ana-
lytic solution of Mathieu’s equation has not yet been achieved. Instead,
there exists throughout the literature, both on physics and mathemat-
ics, a myriad of approximations and numerical methods which may be
used to extract quantities of interest. It is the goal of this paper to col-
lect these approximations together in one place for easy reference, to
review them explicitly and explore their regimes of validity. The focus
is to illustrate and compare the results found in the vast body of litera-
ture on this topic.

This manuscript will focus primarily on applications of Mathieu’s
equation to the physics of Josephson junctions [9–12], however we will
keep the notation general as the results presented herein may be of use
across diverse fields. Josephson junctions are elements in superconduct-
ing circuits, which are of great interest due to potential applications in
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quantum technology [9,13,14].
A single Josephson junction is governed by the Hamiltonian

H = −4EC
𝜕2

𝜕𝜙2 − EJ cos(𝜙) (2)

where EC = e2∕2C is the charging energy, C is the junction capacitance,
EJ the Josephson energy and 𝜙 is the phase difference of the super-
conducting condensate across the junction. With this Hamiltonian, the
time-independent Schödinger equation becomes[
−4EC

𝜕2

𝜕𝜙2 − EJ cos(𝜙)
]
𝜓 = E𝜓. (3)

This reduces to Mathieu’s equation upon making the substitutions
𝜙∕2 → z, E∕EC → a, EJ∕2EC → 𝜂. To maintain generality, we will retain
the notation of Mathieu’s equations, but we will bear these substitutions
in mind and make frequent reference to results obtained in the theory
of Josephson junctions.

The focus will be on quantities corresponding to physical observ-
ables in Josephson junctions. We will therefore not be concerned with
the details of the Mathieu functions themselves (physically, the wave-
functions of the Josephson junction array), but primarily on the charac-
teristic value a, the floquet exponent 𝜈, and related quantities depicted
in Fig. 1.

Each of these quantities will be discussed in detail below, but
each can be understood loosely as follows: t = b1 − a0 is the difference
between the lowest characteristic value of an odd-parity Mathieu func-
tion and the lowest characteristic value of an even-parity Mathieu func-
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Fig. 1. The characteristic value a(𝜈) and its derivative with respect to the Floquet expo-
nent 𝜈 for Mathieu’s equation with 𝜂 = 0 (blue) and 𝜂 = 0.3 (red). (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of
this article.)

tion. Physically it corresponds to the bandwidth of the lowest energy
band of a Josephson junction.

For characteristic values between a1 and b1, stable Mathieu func-
tions do not exist. 𝛿 = a1 − b1 represents a gap in characteristic values
of stable Mathieu functions. Physically, 𝛿 corresponds to the band gap
in the energy spectrum of the Josephson junction.

V(𝜈) = da∕d𝜈 is a quantity little discussed in the mathematics lit-
erature, but in the physics of Josephson junctions it is known as the
effective voltage [9].

In experiments on Josephson junctions the quantity 𝜂 is often a con-
trolled parameter. In fact, if one adopts a SQUID geometry, EJ , and by
extension 𝜂, can be tuned in real time by adjusting the applied magnetic
flux [15]. We are therefore primarily interested with how these various
parameters vary with 𝜂. In Fig. 1 we have ploted a(𝜈) and V(𝜈) for 𝜂 = 0
and 𝜂 = 0.2.

The limits of both strong coupling (𝜂 ≫ 1) and weak coupling
(𝜂 ≪ 1) are relatively straightforward. In both cases the characteristic
values can be expressed as asymptotic expansions in powers of 𝜂 or 1∕𝜂
respectively. Below we will explore both of these extreme limits of the
model, and investigate the region 𝜂 ∼ 1 where the approximations are
expected to break down. We will also examine properties of Mathieu’s
equation which may be deduced from periodicity arguments, as these
are expected to be valid for any value of 𝜂.

2. Small 𝜂

In the limit that 𝜂 → 0, Mathieu’s equation becomes

d2𝜓
d𝜙2 + a𝜓 = 0. (4)

This differs from Schrödinger’s equation for a particle moving in free
space only in that the co-ordinate 𝜙 has the topology of a circle. In
this limit, the eigenvalues are continuous and do not form separate
energy bands or levels. The Mathieu functions themselves are simply
± cos(

√
anz), ± sin(

√
bn+1z) (as can be trivially verified). By convention

we take the sign to be positive. The characteristic value of the sine
solution is denoted bn+1 rather than an by convention and for later

convenience, but it should be interpreted the same way (physically, as
an energy eigenvalue).

For finite 𝜂 corrections must be added to the simple cos and sin
solutions, however the solutions retain their periodicity and parity. The
finite 𝜂 generalisations are referred to as cosine-elliptic or sine-elliptic
functions respectively, and are denoted cen(z, 𝜂) and sen+1(z, 𝜂). These
can generally not be expressed in closed form. However, we can obtain
many physically relevant quantities without direct reference to these
functions.

At 𝜂 = 0, stable solutions exist for any value of an (or bm). However,
at finite 𝜂 band gaps appear, and solutions are only stable when the
characteristic value a is an ≤ a ≤ bn+1, where n is an integer and where
we have used a without a subscript to denote an arbitrary characteristic
number which will generally be of fractional order.

Physically, this stability/instability of solutions manifests itself in
the form of energy bands, so that the stability diagram of Mathieu’s
equation gives us the band structure of a Josephson junction. At a given
value of 𝜂, the characteristic energy is a periodic function of the charac-
teristic exponent 𝜈 (to be introduced below). Many quantities of physi-
cal interest can be expressed in terms of the lowest and highest energies
in a band, an and bn+1 respectively. For example, the ground state band-
width is just b1 − a0, and the gap between the ground and first excited
state is a1 − b1.

At small 𝜂, the characteristic values can be expanded in powers of 𝜂
[16], giving

a0 =− 1
2
𝜂2 + 7

128
𝜂4 − 29

2304
𝜂6 + 68687

18874368
𝜂8 + (𝜂10)

b1 = 1 − 𝜂 − 1
8
𝜂2 + 1

64
𝜂3 − 1

1536
𝜂4 − 11

36864
𝜂5 + 49

589824
𝜂6

− 55
9437184

𝜂7 − 265
113246208

𝜂8 + (𝜂9).

(5)

The expression for a1 is identical to b1, but with 𝜂 → −𝜂. Similar
expansions for higher order characteristic values can be found in
section 2.151 of ref. [16].

3. Large 𝜂

When 𝜂 ≫ 1, z remains close to the minima of cos 2z, so that when
expanded as a Taylor series only the second order term is relevant. This
reduces the Mathieu equation to the form of Schrödinger’s equation for
a harmonic oscillator, so that the Mathieu functions may be approxi-
mated by the wavefunctions of a harmonic oscillator

𝜓HO
n (z) = cnHn

(
(2𝜂)1∕4z

)
e−

1
2
√

2𝜂z2
(6)

with energy levels

an = 4
√
𝜂(n + 1

2
) − 2𝜂 (7)

where Hn(x) are Hermite polynomials familiar from the theory of the
quantum harmonic oscillator, cn is a normalization constant and the
constant shift 2𝜂 comes from the expansion of the cosine. Introducing
x = (2𝜂)1∕4z this simplifies to

𝜓HO
n (x) = cnHn (x) e−

1
2 x2
. (8)

In this limit, the Mathieu equation can be interpreted as the Hamil-
tonian for a tight-binding model [17]. Following the standard textbook
analysis of the tight-binding model, we can calculate the bandwidth of
the characteristic values of the Mathieu equation via

b1 − a0 = −∫ dz𝜓(z)𝜓(z − 𝜋)V(z) (9)

where V(z) = −2𝜂(1 + cos(z)) ≈ 𝜂z2 + const. and we have shifted our
integration variable 2z → z. A detailed calculation of this integral, along
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