Accepted Manuscript

Electronic and magnetic properties of SnS₂ monolayer doped with non-magnetic elements

Wen-Zhi Xiao, Gang Xiao, Qing-Yan Rong, Ling-Ling Wang

PII: \$1386-9477(17)31987-2

DOI: 10.1016/j.physe.2018.02.013

Reference: PHYSE 13052

To appear in: Physica E: Low-dimensional Systems and Nanostructures

Received Date: 27 December 2017
Revised Date: 27 January 2018
Accepted Date: 9 February 2018

Please cite this article as: W.-Z. Xiao, G. Xiao, Q.-Y. Rong, L.-L. Wang, Electronic and magnetic properties of SnS₂ monolayer doped with non-magnetic elements, *Physica E: Low-dimensional Systems and Nanostructures* (2018), doi: 10.1016/j.physe.2018.02.013.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Electronic and magnetic properties of SnS₂ monolayer doped

with non-magnetic elements

Wen-Zhi Xiao, 1, a) Gang Xiao, Qing-Yan Rong, Ling-Ling Wang 2

¹ School of Science, Hunan Institute of Engineering, Xiangtan 411104, China

² School of Physics and Electronics, Hunan University, Changsha 410082, China

Abstract:

We performed a systematic study of the electronic structures and magnetic

properties of SnS₂ monolayer doped with non-magnetic elements in groups IA, IIA

and IIIA based on the first-principles methods. The doped systems exhibit

half-metallic and metallic natures depending on the doping elements. The formation

of magnetic moment is attributable to the cooperative effect of the Hund's rule

coupling and hole concentration. The spin polarization can be stabilized and

enhanced through confining the delocalized impurity states by biaxial tensile strain

in hole-doped SnS₂ monolayer. Both the double-exchange and p-p exchange

mechanisms are simultaneously responsible for the ferromagnetic ground state in

those hole-doped materials. Our results demonstrate that spin polarization can be

induced and controlled in SnS₂ monolayers by non-magnetic doping and tensile

strain.

Keywords: SnS₂ monolayer; electronic structure; magnetic property; doping;

first-principles

^{a)}Electronic addresses: xiaowenzhi@hnu.edu.cn

Download English Version:

https://daneshyari.com/en/article/7933475

Download Persian Version:

https://daneshyari.com/article/7933475

<u>Daneshyari.com</u>