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A B S T R A C T

We consider a finite, disordered 1D quantum lattice with a side-attached impurity. We study theoretically the
transport of a single electron from the impurity into the lattice, at zero temperature. The transport is dominated
by Anderson localization and, in general, the electron motion has a random character due to the lattice disorder.
However, we show that by adjusting the impurity energy the electron can attain quasi-periodic motions,
oscillating between the impurity and a small region of the lattice. This region corresponds to the spatial extent of
a localized state with an energy matched by that of the impurity. By precisely tuning the impurity energy, the
electron can be set to oscillate between the impurity and a region far from the impurity, even distances larger
than the Anderson localization length. The electron oscillations result from the interference of hybridized states,
which have some resemblance to Pendry's necklace states (Pendry, 1987) [21]. The dependence of the electron
motion on the impurity energy gives a potential mechanism for selectively routing an electron towards different
regions of a 1D disordered lattice.

1. Introduction

Many researchers [1–9] have studied open (infinite) models of one-
dimensional regular lattices, in which an impurity is introduced that
allows for control over transport and closely related properties in the
lattice. This has led us to consider the possibility that an impurity
might be used to control transport even in disordered finite systems,
with one question in mind: What type of transport would occur if the
ordered lattice were replaced by a disordered one?

It is well-known that disorder in quantum systems produces
Anderson localization [10]. There have been numerous theoretical
and experimental studies on Anderson localization [11–15]. For
example, on the theoretical side, it has been shown that in a one-
dimensional lattice with random energies at each site, all the eigen-
states of the Hamiltonian are localized [16–18]. Although this result
indicates that there can be no electron conductance through an infinite
one-dimensional disordered lattice, sharp resonances at the band
center have been noted [19,20]. Such resonances are required for
electron transport. In fact, Pendry [21] has shown that it is possible to
transmit an electron from one end of a disordered finite lattice to the
other due to the presence of “necklace states” that serve as stepping-
stones for the electron. Necklace states also exist in optical systems
[22,23]. These states form a sub-band that can induce resonant
transport similar to the energy band of an ordered lattice.

Resonances of finite disordered systems coupled to infinite reservoirs
have been theoretically studied in [24,25].

Extrapolating from these previous studies, here we consider finite
disordered lattices (or quantum wires) with a side-attached impurity
(“T-junction”). The impurity can be realized using a quantum dot,
which constitutes a nano-control device. The properties of the dot can
be altered through a gate potential allowing an experimentalist control
over electron transport. Varying the gate potential on the dot can be
used to probe the spectrum and localization properties of the lattice. As
we will show, we can indeed use an impurity to direct transport within
a disordered lattice. In our theoretical study we will consider the case of
zero temperature. Therefore the transport we will discuss is different
from variable-range hopping [26,27], which occurs at non-zero tem-
perature. We will discuss possible extension of our work to the case of
nonzero temperature in Section 7. Note that our lattice is finite, but
large enough so that boundary effects only play a minor role.

Experimentally, effective 1-D systems can be synthesized by a
variety of techniques [28,29], including lattice geometries that incor-
porate a side-attached quantum dot [30,31]. Randomized site poten-
tials in a finite lattice might be obtained, for example, by varying
segment lengths (i.e., growth times) in GaAs/GaP superlattices as-
sembled by laser-assisted catalytic growth [15,29]. An effective side-
attached dot could then potentially be introduced by doping one such
segment.
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While as far as we are aware there have been no studies on
disordered models of electron transport incorporating a side-attached
impurity, at least one experimental realization of a system similar to
ours has been reported in Ref. [32] using microwaves instead of
electrons. The system in Ref. [32] consists of a waveguide with random
blocks (analogous to our disordered lattice) and an air-gap in the
middle (analogous to our impurity site). The focus of Ref. [32] however
is different from the focus of our present study, as we will discuss
below. In another relevant work, boundary effects on localization
properties have recently been studied in finite, weakly disordered
optical waveguide arrays [34]. Moreover, Refs. [27,33] have considered
control of thermopower using a gate potential that shifts all the lattice
energies at once.

We will consider the motion of the electron from the impurity to the
lattice and back. The initial state is that in which the electron is
completely localized in the side impurity. Hereafter this state will be
referred to as the unperturbed impurity state; this state is an eigenstate
of the unperturbed Hamiltonian, corresponding to the case where the
impurity is decoupled from the lattice. The coupling will allow the
electron to transfer between the impurity and the lattice.

We will treat the energy of the impurity as a tunable parameter. We
will study how this parameter influences the transport of the electron
from the impurity to the lattice, or vice versa.

Our main finding is that for certain impurity energies the electron
can jump to small regions in the lattice; these regions are localization
centers of Anderson-localized states whose energy is matched by the
impurity energy. These, together with the impurity state, form hybri-
dized states that are similar to the necklace states studied by Pendry.
Interference between the hybridized states induces Rabi-like oscilla-
tions of the electron survival probability at the impurity. Hence, the
electron alternates positions between the impurity and the localization
centers of the lattice states hybridized with the impurity state.

The Rabi-like oscillations occur in the vicinity of avoided crossings
in the energy spectrum of the system; these avoided crossings are
induced by the interaction between the impurity and the lattice. The
center of the avoided crossings signals the appearance of maximally
hybridized states. Experimental observation of avoided crossings and
hybridized states similar to ours was the main focus of Ref. [32]
mentioned above. The new aspect of our study relative to Ref. [32] is
the description of the time evolution of the electron associated with
these avoided crossings and the possibility of tuning the impurity
energy to predictably route electrons to different regions of the lattice.
In addition, we will also point out that the range of electron transport
can be larger than the localization length of the hybridized states, as
long as the impurity energy is precisely tuned to match the center of the
avoided crossing.

We will focus our attention on Rabi-like oscillations involving only
two or three hybridized states. Oscillations involving many hybridized
states produce an erratic pattern of motion, which is less suitable for
controlled transport.

The paper is organized as follows: in Section 2 we introduce our T-
junction model and discuss the general eigenstate characteristics both
before and after the disordered lattice is coupled to the side impurity.
In Section 3 and Appendix A we analyze the hybridization properties of
the T-junction model in closer detail, before introducing the essential
concepts for our transport scheme in Section 4. In Section 5 we discuss
how the range of transport can be tuned even beyond the Anderson
localization length of hybridized states close to the impurity. Then in
Section 6 we show our results are robust against ensemble averaging
before presenting our final discussion in Section 7.

2. T-Junction lattice

We consider a T-junction lattice, consisting of a disordered lattice (a
finite one-dimensional chain of quantum-wells with random energy
levels) and a side impurity attached to one of the wells. The impurity is

introduced as a nano-control device that will enable directed electron
transport between the impurity and a lattice segment.

We will focus on the motion of a single electron and will neglect
Coulomb interactions altogether. We will model the lattice using a
tight-binding Hamiltonian with uniform nearest-neighbor interactions,
represented as a sum of lattice and impurity Hamiltonians,
H H H= +lattice d. The lattice Hamiltonian is written as

∑ ∑H x x b x x x x= ϵ | 〉〈 |−
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The energies ϵx are random energies uniformly distributed to introduce
purely diagonal disorder. They describe unoccupied levels of the
quantum wells that will roughly form an energy band. The width of
the disorder W is represented by the range W = ϵ − ϵmax min, where for
simplicity we will set Wϵ =max and ϵ = 0min . Other parameters include
the number of lattice sites N and nearest neighbor interaction strength
b/2. We will chooseW b= such that the disorder width is comparable to
the nearest-neighbor interaction strength.

The impurity Hamiltonian is given by

H d d g a d d a= ϵ | 〉〈 | − (| 〉〈 | + | 〉〈 |)dd (2)

The impurity is denoted as d while the lattice attachment site is defined
as site a, where a N∈ {1, }; ϵd represents the energy of the impurity,
which we treat as a tunable parameter. The impurity could be
physically realized by using a quantum dot with a variable gate
potential [30,31] or by segment doping, although the impurity energy
would be fixed for an individual lattice in the latter case. Tunneling
strength between the impurity and the attachment site is given by g.
We limit our numerical analysis to lattices of size N = 100 (Fig. 1).

2.1. Characteristics of uncoupled disordered lattice

To better understand the capability of the side impurity to direct
transport within the lattice we first investigate the influence on the
spectrum of the Hamiltonian as we vary the tunneling strength. We will
begin by investigating the g = 0 case, when the lattice and impurity are
uncoupled. For this case the Hamiltonian of the disconnected lattice
can be diagonalized as

∑H E ψ ψ= | 〉〈 |.
m

N

m m mlattice
=1 (3)

The presence of disorder results in Anderson Localization (AL) in the
lattice. To demonstrate the occurrence of state localization we numeri-
cally diagonalized a specific realization of the lattice Hamiltonian with
random site-energies. Fig. 2 shows one of the resulting localized states.
In this section and in Sections 3–5 we will use this specific realization
of the site energies to illustrate our results.

The degree of state localization can be determined by the second
moment of probability density, the inverse participation number [35]

Fig. 1. Zoomed in view of our T-junction lattice in the vicinity of the impurity site d. The
total lattice has N sites. The lattice sites have disordered energies within the rangeW and
a constant nearest neighbor interaction energy of b/2. The impurity has energy ϵd and is

attached to the lattice at site a through tunneling strength g.
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