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H I G H L I G H T S

� The transmission phase increase on resonances is calculated for few electrons rectangular quantum dots.
� Electronic correlations induce a quasi–liner decrease of the transmission phase with the dot size.
� Ground state spin transitions are reflected in jumps of the transmission phase.
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a b s t r a c t

The phase shift of the electron's wave function after a tunneling event (i.e. the transmission phase) was at
first measured for its fundamental or applicative relevance for quantum circuitry, but later the phase
study self-motivated due to a number of unexpected results. One such result was the reduced increment
of the phase on some resonances - with only fractions of π - in the few-electrons “mesoscopic” regime. In
this paper we address such a regime for a rectangular quantum dot and compute the total phase increase
on the first four resonances by means of accurate configuration–interaction method and a generalized
Friedel sum rule as proposed by Rontani (2006) [17]. Our findings confirm that the electronic correlations
reduce the on-resonance phase growth which is also found to decrease quasi–linearly with the dot size,
the decrease being more pronounced as the number of electrons on the dot is raised. Sudden jumps (of
small amplitude) of the phase are found to accompany ground states spin transitions.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since the wave functions in quantum mechanics are complex
quantities, measuring – or calculating – the phase of the electron
has emerged as a natural key direction in the mesoscopic physics
of the last two decades. The phase of the wave function, rather
than just the amplitude, plays an important role for instance in the
bonding of molecular orbitals or in quantum interference phe-
nomena. The focus of this paper will be the study of the electron's
phase shift after tunneling through a quantum dot, with potential
applications in quantum circuitry, the motivation residing also in
some intriguing experimental results, which are yet to be ex-
plained. The textbook model of an electron tunneling through a
double barrier predicts an increase of the transmission phase (i.e.
the phase of the complex quantity t from the teikx transmission
term) with precisely π on each resonance and a constant value
between resonances (see for illustration Fig. 14 from [1]), however
the experimental results have been very different from that
expectation.

The first transmission phase measuring experiments [2,3] have
been performed by inserting a quantum dot in one arm of a me-
soscopic interferometer and it was shown that the transmission
phase can be directly related to the shift of the Aharonov–Bohm
oscillations, making it rigourously identifiable. The mentioned
experiments have revealed an unexpected result, namely a uni-
versal π lapse of the phase between all pairs of resonances, con-
tradicting not only an intuitive Friedel sum rule [4] or the simple
double barrier model, but also more elaborate models (see the
early review [1]). As time passed, the phase lapse problem re-
ceived an well-deserved appellative of “longest standing puzzle in
mesoscopic physics” [5], efforts being still on-going for a convin-
cing explanation (see, e.g., [6–13] and references therein).

Later, Avinun–Kalish et al. [14] have shown that the universal
phase lapse behavior occurs only for large number of electrons
( ≳N 10) while in the few-electrons regime – named by the au-
thors “mesoscopic”- the phase lapses are not omnipresent.
Nevertheless, the mesoscopic regime revealed some equally in-
triguing puzzles of its own, among which the reduced evolution of
the phase on some resonances and the presence of on-resonance
non-monotonic evolutions (of dip-like shapes). Some theoretical
papers already addressed the mesoscopic regime [15–18]. A re-
duced variation of the transmittance phase for a electron
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tunneling through a quantum dot with a magnetic impurity was
found in [19].

The focus of our paper will be on the mesoscopic regime, with
the emphasis on the magnitude of the transmission phase evolu-
tion on resonances, for a wide interval of dot sizes. Multi-electrons
regime and the phase lapse problem between resonances fall
outside of our scope here.

Electron–electron interaction gives rise to a large variety of
mesoscopic phenomena. If few electrons are weakly confined in
large quantum dots, Wigner crystallization [20–22] and particles-
like behavior may occur, while in the opposite situation of extreme
confinement interaction effects are negligible compared to the
kinetic energies involved. Quite remarkably, it is the intermediate
regime that corresponds to the experimental set-up [14], giving
raise to complex interplay between confinement and interaction
effects, which we shall addressed in the context of transmission
phase calculations. For this purpose, we shall consider a rectan-
gular quantum dot of variable size, the motivation for shape
choosing residing in a better resemblance with the litho-
graphycally defined dots [14], also avoiding particular degen-
eracies of circular or parabolical confinements.

Our approach will then follow [17,18], by performing spectral
calculations in the few-electrons regime and extract relevant
phase information via the Friedel sum rule. The spectra are cal-
culated using the configuration–interaction method, which is
known to give highly accurate results of controlled precision, or
numerically exact results for discrete systems with small number
of sites and electrons [18,23–37]. Exact diagonalization is per-
formed on the full set of Slater determinants, separated in sub-
spaces with the same electrons number, no approximations or
truncations being done in this part of calculations. Most im-
portantly, the method has convergence properties in respect to the
size of the single particle basis (used for the Slater determinants)
which can be increased till the main results – spectrum and wave
functions coefficients – undergo negligible changes.

The results indicate that the overall increase of the phase across
a single resonance decrease almost linearly with dot size, dis-
continuities being found in case of ground states spin transitions.

The outline of the paper is as follows: Section 2 presents the
configuration–interaction method for calculating the eigenfunc-
tions which are then used in Section 3 to calculate the total in-
crease of the phase on resonances. Section 4 concludes the paper.

2. Few-electrons eigenfunctions calculation by use of config-
uration–interaction method

The system we consider in this paper is a rectangular quantum
dot – depicted in Fig. 1, and prior to the many–body calculations
one has to determine the single-particle eigenfunctions and ei-
genenergies. For a wide variety of shapes, even complex ones,
there exist in literature recipes for exact or highly accurate ei-
genvalues and eigenfunctions calculations (see, e.g. [38] and

references therein). For the 2D rectangle they are simply:
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with the usual notations, L and γL being the rectangle sides and the
integer longitudinal and transversal quantum numbers ≥m n, 1
naturally label the modes. In the following, we shall switch to a
single parameter notation {( )} ⇔ { }m n a, , strictly for simplicity of
exposure, existing no risk of confusion – and the order being given
by the respective eigenenergies, starting with the ground state.

The interacting dot Hamiltonian can be generically written in
the second quantization:
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the single-particle energies ϵa and eigenmodes Ψa being those
from Eq. (1) (relabeled with only one index, in order of increasing
energy) and the Coulomb interaction coefficient is:

π= ( ϵ| − ′|)′U e r r/ 4r r,
2 . It is interesting to notice on the spot that the

Coulomb terms depend on the dot size as L1/ while the kinetic
terms in Eq. (1) depend as L1/ 2. As such, interaction effects are
expected to be negligible at very high confinement (low values of
L) and dominant at large dot sizes.

After calculating the Coulomb elements (Eq. (3)), the diag-
onalization procedure for the Hamiltonian (Eq. (2)) can be per-
formed for sub-spaces with set number of electrons placed in all
possible ways in the chosen number of single particles states. The
configuration–interaction method proceeds by increasing the sin-
gle-particle basis (given by N in Eq. (2)) until convergence is at-
tained for the quantities of interest such as the ground state en-
ergy and coefficients of the eigenfunctions. The maximum number
of single particles states used in this paper will be 28 (including
the spin), which ensure good convergence for the presented
results.

For a rectangular dot with sides ratio γ = 0.8 (see Fig. 1), the
expansion of the ground state wave function for two, three and
four electrons is given in Table 1, assuming two different values of
the “long” side L [expressed in units of the Bohr radius

π= ϵ ( )a e m4 / e0
2 2 , which has the values a0¼0.053 nm in vacuum

and a0¼10 nm in GaAs]. Note that the coefficients are given, in-
cluding the sign – relative to the dominant coefficient-, and not the
square modules which show in fact the states occupancies. For
length considerations, only coefficients higher then 0.1 -corre-
sponding to a spectral weight of 1%- have been given. Still it is
important to mention that for high values of L, and increase effect
of interaction, contributions much lower than 1% can become
important as there are very numerous terms with such coeffi-
cients. In the numerical calculations, all contributions are
considered.

The effect of interaction is relatively small for =L a4 0 when the
occupation of higher Slater determinants is reduced for all studied
electrons numbers. By increasing the size of the dot, the interac-
tion becomes more dominant which reflects in the occupancy of
higher states. The maximum size considered in this paper is

=L a12 0, corresponding to roughly 120 nm for the case of GaAs
heterostructures. This size exceeds the dot sizes used in usual
phase measuring experiments (in [14] we estimate <L 100 nm),
corresponding therefore to higher role of correlations. Moreover,
the dots in experiment are not truly 2D, as is the case in our
model, making confinement effectively less. All these aspects al-
low us to conclude that the lengths range studied in this paper

Fig. 1. Sketch of a rectangular quantum dot with sides ratio γ which is connected to
leads by a hopping t. The numerical calculations will be performed for γ = 0.8. Even
if the dot is connected to the Left and Right leads, some transmission phase
properties can be extracted from the spectral properties of the isolated dot – see
description in text.
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