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H I G H L I G H T S

� We report calculations of acoustic oscillation modes of BN NT in a framework of a continuum model.
� A simple formula for the RBM frequency is provided in terms of the sound velocities.
� The general behavior of acoustic modes is correctly described.
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a b s t r a c t

A continuum model is employed to calculate the low-frequency phonons of boron nitride nanotubes. We
find an excellent agreement of the optically active modes calculated within this approach and those from
more elaborate calculations within an energy and wavelength window that can be established before-
hand, from the choice of the bulk input parameters. We verify that this model describes correctly the
dependence of radial breathing mode with the radius, the existence of parabolic modes at small wave-
vectors, and other general characteristics of the dispersion relations of these systems.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The geometry of boron nitride nanotubes (BNNTs) is very si-
milar to that of carbon nanotubes (CNTs): while for the latter the
two triangular sublattices are obviously occupied by carbon atoms,
in BNNTs one of the sublattices is composed of B atoms and the
other of N. The labeling of BN tubes is identical to that of CNTs: like
their carbon analogs, they can be viewed as rolled-up hexagonal
boron nitride (h-BN) strips, identified by their circumference
vector in the two-dimensional (2D) BN hexagonal sheet. However,
unlike CNTs, their electronic properties barely depend on their
geometry: they are all wide bandgap materials, with significant
luminescence and absorption in the UV. In fact, this gap can be

tuned by applying an electric field due to the absence of screening;
a giant Stark effect has been measured in BNNTs [1], increasing the
prospective electronic and optoelectronic uses of these nanotubes.

Indeed, two-dimensional BN is much more stable from the
thermal and chemical viewpoint than graphene; this also applies
to the tubular forms [2]. They are excellent thermal conductors, an
important property with key applications in nanodevices as heat
dissipators. Notwithstanding, BN nanotubes have been much less
studied than their carbon counterparts. This is due to the fact that
the synthesis of BNNTs is much harder than that of CNTs [3]. Re-
cent advances in BNNT growth techniques may result in an in-
crease of experimental research that has already provided rich
evidence of their potential applications [4,5]. For example, BNNTs
are exceptionally stiff and lightweight materials, like CNTs, which
could be used for protecting devices and reinforcement of com-
posites. Due to their boron content, they can be employed for
neutron absorption, which can be enhanced by hydrogen doping.
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The combination of mechanical resistance and UV plus neutron
absorption points toward their foreseeable application as protec-
tive materials in adverse environments, as the outer space.

BNNTs are polar materials. Because of their ionic bonds, they
can have piezoelectric properties; they are also expected to be of
interest for desalination and filtration at the nanoscale. It has been
recently measured the production of electric currents through a
BNNT piercing an ultrathin membrane due to salinity gradients,
constituting a nanofluidic device [6]. In addition, measurements in
multiwalled BNNTs evidence an ultrahigh friction force which has
been related to their ionic character [7]. This characteristic is re-
levant for the design of shock absorber materials.

In order to identify BNNTs, the study of low-frequency phonons
is crucial, for Raman and infrared (IR) spectroscopy. While in CNTs
Raman spectra are the main optical technique for determination of
the nanotube radii, in BNNTs Raman intensity is lower, so IR ex-
periments are also used for their characterization. Besides,
acoustic phonons are relevant for transport properties; in these
grounds, continuum models are helpful for the understanding of
the physical mechanisms of electron-phonon interaction.

From the theoretical viewpoint, phonon modes in BNNTs have
been studied by means of various models, such as valence shell [8],
tight-binding plus electrostatic interaction [9], and ab initio [10–
12]. In this work, we employ a continuum approach to model the
low-frequency phonons of these nanotubes, which has been suc-
cessfully applied to CNTs [13], without the restrictions of more
sophisticated method with respect to the size of the systems
studied.

This work is organized as follows: Section 2 presents the details
of the phenomenological model. In Section 3 we present our re-
sults. Finally, we draw our conclusions in Section 4.

2. Phenomenological continuum model in cylindrical
geometry

We model the nanotubes as infinite cylindrical shells with ra-
dius R and thickness h, so that the inner and outer radii are
R h/2± . We choose the axis of the wire along the z direction of the
cylindrical coordinates r z, ,θ( ). Although the continuum approach
employed in this work has been reported elsewhere [14–16,13,17],
for the sake of completeness we summarize here the main fea-
tures of the model, particularizing for the tubular geometry.

Assuming a harmonic time-dependence for the oscillations, the
equations of motion for the acoustical modes are given by [18]

u v u v u , 1L T
2 2 2ω → = ∇(∇·→) + ∇ × ∇ × → ( )

where u→ is the relative mechanical displacement of the ions, ω is
the frequency of the vibrational modes, and vL, vT are the long-
itudinal and transverse sound velocities of the bulk material, i.e.,
hexagonal boron nitride. This model assumes that the corre-
sponding bulk material, h-BN, is isotropic. This assumption is valid
if the two sound velocities are approximately the same. i.e., when
the elastic constants verify C C C211 12 44− ≈ [19,20].

The procedure for obtaining a general basis for the solutions of
Eq. (1) in cylindrical coordinates, Helmholtz's method, has been
previously reported [21,16]. For the sake of completeness, we give
here the explicit expression for the basis, which is useful to elu-
cidate the couplings of the different modes
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The vector components of the basis functions above are given in
cylindrical coordinates, u u u, ,r z( )θ ; n is an integer label related to
the angular dependence of the modes; kz the continuum wave-
vector along the axis of the tube, and the wavevectors qL T, are
given by
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If qL T, ∈ ( qL T, ∈ ) the function fn is an order-n Bessel function
of the first or second kind, i.e., Bessel Jn or Neumann Nn (Infeld In or
McDonald Kn). The longitudinal or transversal character of the

solution is given by u 0L∇ × → =
→

and u u 0T T1 2∇·→ = ∇·→ = respectively.
Besides these solutions, there is another one not given by Helm-
holtz's method, a transverse n¼0 twiston mode. It only has a non-
zero component, the angular uθ proportional to the cylindrical
radial coordinate r and velocity equal to that of the transverse 2D
bulk mode. The twiston mode was already reported in cylindrical
shells and rods [22–24], and more recently described for carbon
nanotubes [25–27,13]. This solution is not included in the obtained
basis because it is not regular at infinity; however, in a bounded
region it should also be taken into account.

The general solution to the problem can be written as a linear
combination of the basis vectors, whose coefficients are de-
termined by imposing the appropriate boundary conditions. For
free-standing nanotubes, these conditions are those of free sur-
faces, which means that the momentum transmitted outside the
cylindrical shell is zero. In terms of the stress tensor, this amounts
to setting the radial stress components to zero at the inner and
outer nanotube surfaces. More details are given in Ref. [13].

The explicit form of the basis allows us to elucidate the un-
coupled modes for special symmetries, such as n¼0 or kz¼0. For
n¼0, kz¼0, L, T1 and T2 modes are uncoupled. If n 0≠ , kz¼0, the
T1 mode remains uncoupled, but there is a L T2− coupling. Like-
wise, if n¼0, k 0z ≠ it can be seen that it is the T2 mode the one
that remains uncoupled, and L T1− coupling develops with in-
creasing kz. Notice that this analysis also holds for other types of
boundary conditions, such as continuity of the amplitude at the
interfaces or the stress tensor, provided that they only involve
linear relations of the basis vectors and its derivatives.
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